
The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x) (+ x 1))
(f 10)

(define (f y) (+ y 1))
(f 10)

yes

argument is consistently renamed

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x) (+ x 1))
(f 10)

(define (f x) (+ y 1))
(f 10)

no

not a use of the argument anymore

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x) (+ x 1))
(f 10)

(define (f y) (+ x 1))
(f 10)

no

not a use of the argument anymore

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x) (+ y 1))
(f 10)

(define (f z) (+ y 1))
(f 10)

yes

argument never used, so almost any name is ok

1-8

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x) (+ y 1))
(f 10)

(define (f y) (+ y 1))
(f 10)

no

now a use of the argument

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x) (+ y 1))
(f 10)

(define (f x) (+ z 1))
(f 10)

no

still an undefined variable, but a different one

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x)
 (let ([y 10])
 (+ x y)))

(define (f z)
 (let ([y 10])
 (+ z y)))

yes

argument is consistently renamed

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x)
 (let ([y 10])
 (+ x y)))

(define (f x)
 (let ([z 10])
 (+ x z)))

yes

local variable is consistently renamed

9-16

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x)
 (let ([y 10])
 (+ x y)))

(define (f x)
 (let ([x 10])
 (+ x x)))

no

local variable now hides the argument

The Arbitrariness of Variable Names

Are the following two programs equavalent?

(define (f x)
 (let ([y 10])
 (+ x y)))

(define (f y)
 (let ([y 10])
 (+ y y)))

no

local variable now hides the argument

Free and Bound Variables

A variable for the argument of a function or the name of a local
variable is a binding occurrence

(define (f x y) (+ x y z))

(let ([a 3][c 4]) (+ a b c))

Free and Bound Variables

A use of a function argument or a local variable is a bound
occurrence

(define (f x y) (+ x y z))

(let ([a 3][c 4]) (+ a b c))

17-22

Free and Bound Variables

A use of a variable that is not function argument or a local variable is a
free variable

(define (f x y) (+ x y z))

(let ([a 3][c 4]) (+ a b c))

Evaluating Let

... (let ([<id>1 <val>1]...[<id>k <val>k]) <expr>a) ...

→
... <expr>b ...

where <expr>b is <expr>a with free <id>i replaced by <val>i

(let ([x 10]) (let ([x 2]) x))
→
(let ([x 2]) x)
→
2

Evaluating Let

... (let ([<id>1 <val>1]...[<id>k <val>k]) <expr>a) ...

→
... <expr>b ...

where <expr>b is <expr>a with free <id>i replaced by <val>i

(let ([x 10])
 (let ([x (+ x 1)]) x))

Evaluating Let

... (let ([<id>1 <val>1]...[<id>k <val>k]) <expr>a) ...

→
... <expr>b ...

where <expr>b is <expr>a with free <id>i replaced by <val>i

(let ([x 10])
 (let ([x (+ x 1)]) x))
→
(let ([x (+ 10 1)]) x)
→
(let ([x 11]) x) → 11

23-27

Evaluating Function Calls, Revised

... (define (<id>0 <id>1...<id>k) <expr>a) ...

... (<id>0 <val>1...<val>k) ...

→
... (define (<id>0 <id>1...<id>k) <expr>a) ...
... <expr>b ...

where <expr>b is <expr>a with free <id>i replaced by <val>i

Local Functions

Recall that

(define <id>0 (lambda (<id>1...<id>k) <expr>))

is shorthand for

(define (<id>0 <id>1...<id>k) <expr>)

New rule: lambda is allowed in let bindings to define local functions:

(let ([f (lambda (x) (+ x 1))])
 (f 10))

Evaluation of Local Functions

(let ([f (lambda (x) (+ x 1))])
 (f 10))
→
(define f1073 (lambda (x) (+ x 1)))
(f1073 10)
→
(define f1073 (lambda (x) (+ x 1)))
(+ 10 1)
→
11

Evaluation of Local Functions

...

... (let ([<id> (lambda (<id>1...<id>k) <expr>)]) <expr>a) ...
→
... (define (<id>x <id>1...<id>k) <expr>)
... <expr>b ...

where <expr>b is <expr>a with free <id> replaced by <id>x and x is a
subscript that has never been used before, and never will be used again

28-32

Lexical Scope

(define (f x)
 (let ([g (lambda (y) (+ y x))])
 (let ([x 2])
 (g 3))))
(f 7)

Will x be 7 or 2 ?

7, due to lexical scope: the value of a bound occurrence comes from its
binding

Need a complete definition of free and bound...

Free and Bound Variables in Scheme

For simplicity, we consider a variant of Scheme that is more restricted
than usual:

<expr> ::= <num>
::= <id>
::= (+ <expr> <expr>)
::= (let ([<id> <expr>]) <expr>)
::= (let ([<id> (lambda (<id>) <expr>)]) <expr>)
::= (<id> <expr>)

Free Variables in Scheme

<num> has no free variables

<id> has one free variable: <id>

(+ <expr>1 <expr>2) has all the free variables of <expr>1 and <expr>2

combined

(let ([<id>a <expr>b]) <expr>a) has all the free variables of <expr>a, but
without <id>a, plus all the free variables of <expr>b

(let ([<id>a (lambda (<id>b) <expr>b)]) <expr>a) has all the free
variables of <expr>a, but without <id>a, plus all the free variables of
<expr>b, but without <id>b

(<id> <expr>) has all the free variable <id> plus all the free variables of
<expr>

Free Variables in Scheme

See implementation in Scheme

Reviews define-datatype motivation and use

33-40

Bound Variables in Scheme

<num> has no bound variables

<id> has no bound variables

(+ <expr>1 <expr>2) has all the bound variables of <expr>1 and <expr>2

combined

(let ([<id>a <expr>b]) <expr>a) has the bound variable <id>a if it is free in
<expr>a, plus all the bound variables of <expr>a and <expr>b

(let ([<id>a (lambda (<id>b) <expr>b)]) <expr>a) has the bound variable
<id>a if it is free in <expr>a, plus the bound variable <id>b if it is free in
<expr>b, plus all the bound variables of <expr>a and <expr>b

(<id> <expr>) has all the bound variables of <expr>

let*

let∗ is a shorthand for nested lets

(let∗ ([<id>1 <expr>1]...[<id>k <expr>k]) <expr>)

=

(let ([<id>1 <expr>1]) ... (let ([<id>k <expr>k]) <expr>)...)

(let ([x 1][y x][z y]) z) →→ undefined variable x

(let∗ ([x 1][y x][z y]) z) →→ 1

letrec

letrec binds its identifiers in local function bodies, as well as the main
body

...

... (letrec ([<id> (lambda (<id>1...<id>k) <expr>c)]) <expr>a) ...
→
... (define (<id>x <id>1...<id>k) <expr>d)
... <expr>b ...

where <expr>b is <expr>a with free <id> replaced by <id>x, <expr>d is
<expr>c with free <id> replaced by <id>x and x is a subscript that has
never been used before, and never will be used again

Free Variables with letrec

(letrec ([<id>a (lambda (<id>b) <expr>b)]) <expr>a) has all the free
variables of <expr>a, but without <id>a, plus all the free variables of
<expr>b, but without <id>a and <id>b

41-45

Bound Variables with letrec

(let ([<id>a (lambda (<id>b) <expr>b)]) <expr>a) has the bound variable
<id>a if it is free in <expr>a or <expr>b, plus the bound variable <id>b if it
is free in <expr>b, plus all the bound variables of <expr>a and <expr>b

Language EoPL 3.4

<expr> ::= <num>
::= <id>
::= <prim> (<expr>*(,))
::= if <expr> then <expr> else <expr>
::= let { <id> = <expr> }* in <expr>

Language EoPL 3.4

(define-datatype expression expression?
 (lit-exp
 (datum number?))
 (var-exp
 (id symbol?))
 (primapp-exp
 (rator primitive?)
 (rands (list-of expression?)))
 (if-exp
 (test-exp expression?)
 (then-exp expression?)
 (else-exp expression?))
 (let-exp
 (ids (list-of symbol?))
 (rands (list-of expression?))
 (body expression?)))

Free Variables in EoPL 3.4

(lit−exp <num>) has no free variables

(var−exp <symbol>) has one free variable: <symbol>

(primapp-exp <prim> (list <expr>1 ... <expr>n)) has all the free
variables of <expr>1 through <expr>n combined

(if−exp <expr>1 <expr>2 <expr>3) has all the free variables of <expr>1

through <expr>3 combined

(let−exp (list <symbol>1 ... <symbol>n)
(list <expr>1 ... <expr>n)
<expr>0) has all the free variables of

<expr>0, but without <symbol>1 through <symbol>n, plus all the free
variables of <expr>1 through <expr>n

46-49

Bound Variables in EoPL 3.4

(lit−exp <num>) has no bound variables

(var−exp <symbol>) has no bound variables

(primapp-exp <prim> (list <expr>1 ... <expr>n)) has all the bound
variables of <expr>1 through <expr>n combined

(if−exp <expr>1 <expr>2 <expr>3) has all the bound variables of <expr>1

through <expr>3 combined

(let−exp (list <symbol>1 ... <symbol>n)
(list <expr>1 ... <expr>n)
<expr>0) has all the bound variables of

<expr>0 through <expr>n, plus any of <symbol>1 through <symbol>n
that are free variables of <expr>0

50-51

