Translation Validation for LLVM’s AArch64 Backend

RYAN BERGER, NVIDIA, USA

MITCH BRILES, University of Utah, USA

NADER BOUSHEHRINEJAD MORADI, University of Utah, USA

NICHOLAS COUGHLIN, Defence Science and Technology Group, Australia and University of Queens-
land, Australia

KAIT LAM, Defence Science and Technology Group, Australia and University of Queensland, Australia
NUNO P. LOPES, INESC-ID, Portugal and Instituto Superior Técnico - University of Lisbon, Portugal
STEFAN MADA, University of Utah, USA

TANMAY TIRPANKAR, University of Utah, USA

JOHN REGEHR, University of Utah, USA

LLVM’s backends translate its intermediate representation (IR) to assembly or object code. Alongside register
allocation and instruction selection, these backends contain many analogues of components traditionally
associated with compiler middle ends: dataflow analyses, common subexpression elimination, loop invariant
code motion, and a first-class IR—MIR, the “machine IR In effect, this kind of compiler backend is a highly
optimizing compiler in its own right, with all of the correctness hazards entailed by a million lines of intricate
C++. As a step towards gaining confidence in the correctness of work done by LLVM backends, we have
created ARM-TV, which formally verifies translations between LLVM IR and AArch64 (64-bit ARM) code. Ours
is not the first translation validation work for LLVM, but we have advanced the state of the art along multiple
fronts: ARM-TV is a checking validator that enforces numerous ABI rules; we have extended Alive2 (which
we reuse as a verification backend) to deal with unstructured mixes of pointers and integers that are typical
of assembly code; we investigate the tradeoffs between hand-written AArch64 semantics and those derived
mechanically from ARM’s published formal semantics; and, we have used ARM-TV to discover 45 previously
unknown miscompilation bugs in this LLVM backend, most of which are now fixed in upstream LLVM.

CCS Concepts: » Software and its engineering — Formal software verification.
Additional Key Words and Phrases: translation validation, lifting, semantics, application binary interface

ACM Reference Format:

Ryan Berger, Mitch Briles, Nader Boushehrinejad Moradi, Nicholas Coughlin, Kait Lam, Nuno P. Lopes, Stefan
Mada, Tanmay Tirpankar, and John Regehr. 2025. Translation Validation for LLVM’s AArch64 Backend. Proc.
ACM Program. Lang. 9, OOPSLAZ2, Article 369 (October 2025), 26 pages. https://doi.org/10.1145/3763147

Authors’ Contact Information: Ryan Berger, NVIDIA, Santa Clara, USA, ryanbberger@gmail.com; Mitch Briles, University
of Utah, Salt Lake City, USA, mitch.briles@utah.edu; Nader Boushehrinejad Moradi, University of Utah, Salt Lake City,
USA, nader.bushehri@gmail.com; Nicholas Coughlin, Defence Science and Technology Group, Brisbane, Australia and
University of Queensland, Brisbane, Australia, n.coughlin@ugq.edu.au; Kait Lam, Defence Science and Technology Group,
Brisbane, Australia and University of Queensland, Brisbane, Australia, kait.lam@ugq.edu.au; Nuno P. Lopes, INESC-ID,
Lisbon, Portugal and Instituto Superior Técnico - University of Lisbon, Lisbon, Portugal, nuno.lopes@tecnico.ulisboa.pt;
Stefan Mada, University of Utah, Salt Lake City, USA, Stefan.Mada@utah.edu; Tanmay Tirpankar, University of Utah, Salt
Lake City, USA, tanmay.tirpankar@utah.edu; John Regehr, University of Utah, Salt Lake City, USA, regehr@cs.utah.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART369

https://doi.org/10.1145/3763147

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://orcid.org/0009-0001-0355-2009
https://orcid.org/0009-0005-8252-8814
https://orcid.org/0009-0009-5095-368X
https://orcid.org/0000-0001-8758-0666
https://orcid.org/0009-0001-2599-2259
https://orcid.org/0000-0002-3160-1672
https://orcid.org/0009-0006-8473-3667
https://orcid.org/0000-0002-0049-5045
https://orcid.org/0000-0001-7025-4610
https://doi.org/10.1145/3763147
https://orcid.org/0009-0001-0355-2009
https://orcid.org/0009-0005-8252-8814
https://orcid.org/0009-0009-5095-368X
https://orcid.org/0000-0001-8758-0666
https://orcid.org/0009-0001-2599-2259
https://orcid.org/0000-0002-3160-1672
https://orcid.org/0009-0006-8473-3667
https://orcid.org/0000-0002-0049-5045
https://orcid.org/0000-0001-7025-4610
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763147
https://www.acm.org/publications/policies/artifact-review-and-badging-current

369:2 Berger et al.

1 Introduction

Several years ago, one of us was discussing compiler-related challenges with a software architect
at a large automobile manufacturer, who expressed a desire to track LLVM’s top-of-tree—its latest
development version—as part of his company’s toolchain for 64-bit ARM code. In contrast, the
current best practice for safety-critical software projects is to stick with a single compiler version
throughout the entire lifespan of a product; the goal is not to use a correct compiler, but rather to
use a compiler whose deficiencies (and their workarounds) are well-understood. While mulling over
the question “How might we be able to help safety-critical software engineers trust fresh versions
of LLVM?” we decided to start working on ARM-TV, which uses translation validation [14, 15, 21, 22]
to prove that individual executions of LLVM’s AArch64 backend are correct, or wrong.

Why would we focus our attention on an LLVM backend? For one thing, LLVM for AArch64 is
broadly important—it is the code generator for the operating system and other important software
that runs on three billion Android devices and two billion iOS devices. For another, a modern
compiler backend does a lot of work. Traditionally, the primary jobs of a compiler backend were
relatively modest: it was responsible for register allocation, instruction selection, and conforming
to an application binary interface (ABI)—a specification that allows separately-compiled code
modules to interoperate. However, in a modern compiler such as LLVM, a backend is additionally
responsible for performing numerous optimizations, including some that perform inline substitution
of library functions and others that change the memory behavior or control flow of the code being
compiled. In this example—which ArRM-TV validates in about 0.5 s—both kinds of transformation
are performed:

func:
define i32 @func(ptr %p0, ptr %pl) { 1dr x9, [x0] ; load 8 bytes via %p@
%4 = call 132 @memcmp(ptr %p0, ptr %pl, i64 8) 1dr x10, [x1] ; load 8 bytes via %pl
%5 = icmp slt i32 %4, 0 mov w8, #11 ; w8 = 11
br il %5, label %bbl, label %bb2 v x9. x0 » reverse byte order
bbl: . — rev x10, x10 ; reverse byte order
ret i32 7 cmp x9, x10 ; compare, set flags
bb2: mov w9, #7 ;w9 =7
ret i32 11 csel wo, w9, w8, lo ; ret val = 7 or 11
} ret

In the LLVM IR on the left, memcmp(), a C library function, is invoked to compare the 8-byte
memory objects that function arguments %p0 and %pl point to, returning a positive, zero, or
negative result depending on their lexical order. Then, the function returns 7 if the memcmp()
result is negative, and 11 otherwise. Looking at the assembly, LLVM has inlined memcmp(). The
1dr instructions load eight bytes in little endian fashion into each of registers x9 and x10; the rev
instructions reverse the byte order of both registers; and then, a single 64-bit integer comparison
can determine lexical order, given big endian data.! The backend also replaces control flow with
csel, a conditional select instruction.

Their willingness to perform interesting transformations makes LLVM backends difficult to
adequately test. In fact, these backends are sophisticated enough that they have their own internal
optimization pass structure and operate on their own “machine IR”—that is distinct from LLVM IR—
that supports both SSA semantics before register allocation and non-SSA semantics after register
allocation. Together, the “CodeGen” and “Target” subdirectories of the LLVM source tree implement
the LLVM backends in about a million lines of C++.

To implement this same optimization, the memcmp() implementation for early (32-bit ARM) Raspberry Pi boards used the
setend instruction to briefly switch the entire processor into big endian mode. The people developing software such as
QEMU and Valgrind declined to support setend. The rev instruction provides a cleaner alternative.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:3

1.1 ARM-TV

ARM-TV is reasonably feature-complete with respect to user-mode code. It supports integer and
floating point operations, the Neon vector ISA (instruction set architecture), memory operations,
and function calls. To create it, we needed formal semantics for both LLVM IR and AArch64. LLVM
has become a large, complex language with numerous subtle corner cases [7, 9, 27]. Its semantics
are defined by its Language Reference,” an English-language document that can be frustratingly
informal. To avoid replicating existing work on formalizing LLVM, we built ARM-TV on top of
Alive2 [13], which has gained significant acceptance inside the LLVM community. For example,
more than 900 issues in the LLVM project’s GitHub issue tracker contain links to our online version
of Alive2.’ To support the free-form mixes of pointer and integer operations that are commonly
seen in assembly code, we had to add support for physical pointers—those that are effectively just
64-bit indices into anywhere in the address space—to Alive2.

AArché4 is not subtle or complicated, but it is large: the ISA reference that we spent a lot of time
with while building ARM-TV is 4000 pages long [10]. Happily, there is an alternative to formalizing
AArch64 from its documentation: ARM’s machine-readable architecture (MRA), which specifies
the behavior of each instruction using ASL* (Architecture Specification Language). The ASL is
authoritative, but meticulous: it contains far more complexity and detail—for example, regarding
hardware exceptions, interrupts, and memory address translation—than is necessary or desirable
for ARM-Tv. This complexity threatened to make it impractical for us to reuse the MRA. To extract
from it a concise summary of each instruction’s user-mode behavior, we adapted ASLp [5], an
existing partial evaluation tool for ASL, to specialize away aspects of the semantics that we were
not interested in. Independently, we implemented about 1,400 instructions (as LLVM counts them)
by hand, allowing us to perform—as far as we know—the first apples-to-apples comparison between
mechanically derived and hand-written ISA semantics in terms of verification performance.

We found that in order to get good verification performance, we had to do significant optimization
work. First, we wrote a vectorizer for ASLp that allows it to generate native vector operations from
the scalarized instruction semantics that it takes as input. Second, we implemented several new
optimizations within Alive2’s memory subsystem specifically to support pointer behaviors seen in
assembly code.

Most prior work on translation validation has prioritized demonstrating the absence of compiler
bugs, for particular runs of some compiler. We have given equal emphasis to demonstrating the
presence of bugs using translation validation, based on the premise that we would like to make
LLVM better—by eliminating latent miscompilation bugs—even for program developers who do
not, themselves, choose to use translation validation. In a bug-finding workflow, ARM-TV serves as
a strong oracle for detecting miscompilations. In contrast, most prior compiler bug-finding work
uses differential testing—executing two compilers’ outputs, and comparing their effects—as an
oracle [6, 12, 26]. Whereas differential testing can only detect a miscompilation if it is revealed by
that one specific execution path through the generated code, translation validation accounts for all
possible executions of it. Moreover, we designed ARM-TV to check as many ABI-level properties—
such as whether the values of callee-saved registers are preserved—as possible. So far, we have
found and reported 45 miscompilation defects, many of which have been fixed.

Zhttps://llvm.org/docs/LangRef html
Shttp://alive2.llvm.org
4https://developer.arm.com/Architectures/Architecture%20Specification%20Language

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://llvm.org/docs/LangRef.html
http://alive2.llvm.org
https://developer.arm.com/Architectures/Architecture%20Specification%20Language

369:4 Berger et al.

1.2 Refinement

When a program transformation results in the new program having a subset of the old program’s
behaviors, the transformation is a refinement. Ensuring that every transformation is a refinement is
the usual top-level correctness criterion for a compiler. In some cases, such as lowering a 64-bit
add instruction in LLVM IR to a 64-bit addition instruction in assembly language, the refinement is
a trivial special case: an equivalence relation (i.e., the subset of behaviors is not a proper subset).
However, compilers perform numerous transformations that are non-trivial refinements—these
are irreversible because the meaning of the code is changed. For example, if a compiler for a
concurrent programming language coalesces several atomic sections into a single, larger atomic
section, it is likely to be eliminating interleavings that had previously been possible. If a compiler
for C++ implements an int-typed variable using 32 bits of machine storage, it is discarding valid
interpretations of the C++ program where the int was, for example, 16 bits or 64 bits. In the LLVM
middle end and backends, non-trivial refinements are most often due to undefined behaviors. A
simple example is lowering LLVM’s sub nuw instruction (integer subtraction that is undefined
when unsigned overflow occurs) to a standard hardware subtraction instruction, which has a
defined result for all inputs. A key property of refinement is compositionality: if every individual
transformation performed by a compiler is a refinement, then so is the entire compilation process.

1.3 A Representative Failure of Refinement

Consider this LLVM code:
a = load <16 x i8>, ptr %p

o°

o°

b = insertelement <16 x i8> %a, i8 %val, i32 %idx
store <16 x i8> %b, ptr %p

The first instruction loads a 16-wide vector of eight-bit elements from memory at address %p
into %a. The second instruction creates a new vector, %b, that has the same contents as %a, except
that the value at position %idx has been replaced with %val. Then, the last instruction writes this
new vector back to memory at address %p.

The AArch64 backend translated this sequence of operations into:

strb wl, [x0, w2, uxtw] ; *(%p + %idx) = new byte value
Which simply updates a single byte in memory: strb is “store byte.” Here, the bottom byte of wl
contains the value to be stored, x0 is a 64-bit register containing the base address of the vector, and
w2 is the bottom 32 bits of a 64-bit register containing the index of the element to be updated. The
uxtw specifier indicates that w2 should be zero-extended to 64 bits before being added to x0.

As long as %idx (and therefore w2) is in the range 0..15, there is no problem: the AArch64 code
updates the correct lane of the vector in memory. On the other hand, if the index contains a larger
value, then this assembly code will overwrite unrelated memory. To see that the translation is
incorrect, we turn to the specification for insertelement in the LLVM Language Reference,” which
states: “If idx exceeds the length of val for a fixed-length vector, the result is a poison value.” Poison
is a kind of deferred undefined behavior; informally, a poison value can be understood to be similar
to an IEEE 754 quiet NaN: an undefined value that propagates contagiously, that should not be
branched on or passed to external code. (For a detailed discussion of poison and its consequences,
see Lee et al. [9].)

ARM-TV correctly flagged this translation as a failure of refinement. In practice, the ARM code
seems like it could be dangerous: if the vector index is controlled by external program input, an
attacker might be able to create an exploit by overwriting appropriate data elsewhere in the address
space.

Shttps://llvm.org/docs/LangRef. html#insertelement-instruction

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://llvm.org/docs/LangRef.html#insertelement-instruction

Translation Validation for LLVM’s AArch64 Backend 369:5

After we reported this bug (as issue #74248) it was fixed; the compiler now emits:

and x8, x2, #0xf ; reduce %idx modulo 16
strb wl, [x0, x8] ; *(%p + %idx) = new byte value

This clamps the index within the range 0..15, causing the vector element at (%idx mod 16) to
be overwritten. This result, while not being useful when %idx > 16, is a valid refinement of a
poisoned vector. There are many instances in LLVM IR where its developers have preferred this
kind of deferred undefined behavior. The “useless value, but not broadly harmful behavior” for
erroneous situations allows operations—such as the insertelement instruction here—to be safely
speculatively executed, enabling important optimizations such as loop invariant code motion.

A subtle failure of refinement such as this one would not necessarily be easy to find using
differential testing, since the resulting memory corruption would need to be noticed and diligently
backtracked to its root cause. Additionally, this bug had a sibling in LLVM’s extractelement
instruction—that we also found and reported—that would be even harder to detect using standard
testing techniques because the out-of-bounds memory operation was a load, not a store.

1.4 Research Questions

Our evaluation, in Section 3, answers these questions:

(RQ1) Can we create a practical translation validation tool for LLVM’s AArch64 backend, without
modifying LLVM?

(RQ2) Can we optimize Alive2 for assembly-style code that freely intermixes integers and pointers,
that defeat many of its existing memory verification optimizations?

(RQ3) What are the tradeoffs between writing semantics for AArché4 instructions by hand and
deriving semantics from ARM’s machine-readable architecture description?

(RQ4) Does LLVM’s AArch64 backend have latent miscompilation bugs that we can discover using
translation validation?

2 Translation Validation by Lifting

ARM-TV assigns a formal semantics to AArch64 code by lifting it to LLVM IR. While this implemen-
tation choice had some drawbacks—that we discuss below—it had the significant advantages of
allowing us to reuse Alive2 and also the LLVM middle-end optimization pipeline. Given a function
to validate, the top-level steps performed by ARM-TV are:

(1) Invoke LLVM’s AArché4 backend, lowering the function to assembly.

(2) Lift the assembly back to LLVM IR, being careful to preserve refinement. We offer a choice
between a hand-written lifter that tends to produce idiomatic LLVM IR and a mechanically-
generated lifter that makes direct use of ARM’s machine-readable architecture [17].

(3) Run the LLVM middle end optimizer on the lifted IR. Typically, this makes it substantially
more compact.

(4) Verify that the lifted and optimized LLVM IR refines the original IR using a version of
Alive2 [13] that we modified to support an assembly-level memory model.

Fig. 1 illustrates these four steps. Steps 2 and 4 are where we spent our effort. Step 2, implemented
using about 14,400 lines of C++, divides into two main parts. First, we need to generate glue code
to emulate—at the LLVM level—the execution environment that ARM instructions find themselves
in, including elements such as a stack and a register file. Second, we lift each ARM instruction into
a collection of LLVM instructions that achieve the same effect. The rest of this section describes
these steps in detail.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://github.com/llvm/llvm-project/issues/74248

369:6 Berger et al.

Lifted, optimized LLVM function

define 164 @f(i64 %0, i64 %1) {
arm_tv_entry:
%a3_5 = icmp eq i64 %1, 0O
%a3_6 = icmp eq 164 %0, -9223372036854775808
%a3_7 = icmp eq i64 %1, -1
%a3.8 = and il %a3_6, %a3_7

Step 4: Formally verifying | %23-9 = or il %a3.5, %a3.8
br il %a3.9, label %3, label %2

Original LLVM function

define i64 @f(i64, i64) {
%3 = sdiv 164 %0, %1

ret i64 %3
} %a3_10 = sdiv i64 %0, %1

br label %3

refinement using Alive2.

%.0 = phi i64 [0, %arm_tv_entry],
[%a3_10, %2]
ret i64 %.0

Step 3: Optimization by the
LLVM middle-end; this is
a refinement by design.

Step 1: Lowering with
LLVM’s AArch64 backend
is a refinement by design.

Lifted, unoptimized
LLVM function

(omitted, contains 313 instructions)

Step 2: Lifting AArch64 code to LLVM IR using
either the hand-written or ASLp-based lifter.
This is a refinement by design.

sdiv x0, x0, x1
ret

AArch64 function

Fig. 1. How ARM-TV performs translation validation. The top-level correctness property that we check is
that the compiler’s output refines its input. Thin arrows indicate transformations that are intended, by their
respective authors, to be refinements. If each of them is a refinement, then the double arrow at the top must
also be a refinement, since refinement is compositional. If this final refinement relation—which we check
using Alive2—does not hold, then at least one of the three other purported refinements must have been
defective, in which case either we or the LLVM developers have a bug to fix. Section 2.2 explains why the
lifted code is so much longer than both the original and AArch64 functions.

2.1 Building an Execution Environment in LLVM for Lifted AArch64 Code

Both within a function and across function boundaries, ARM instructions communicate with each
other using the stack and the register file. Within a function, communication is free-form, whereas
across functions the protocols are spelled out in a 60-page ABI document: the “Procedure Call
Standard for the Arm 64-bit Architecture (AArch64)®

When ArM-TvV lifts a function, it emits code that allocates LLVM-level memory to hold:

e 29 64-bit general-purpose registers
e a 64-bit stack pointer

a 64-bit frame pointer

a 64-bit link register

a 64-bit zero register

four 1-bit condition code flags

®https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs64.pdf

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs64.pdf

Translation Validation for LLVM’s AArch64 Backend 369:7

e 32 128-bit floating-point / vector registers
e a 4KB stack

Lifted instructions communicate with each other using only these memory regions. This means
that ARM-TV does not need to generate non-trivial SSA code, significantly simplifying our job and
reducing the likelihood of lifter bugs. Furthermore, since the lifted code has a clean separation
between different instructions, debugging the lifter is made easier. The program counter is absent
from the lifted representation; lifted LLVM instructions pass control to their successors in the same
way that ARM instructions do: either by implicit fallthrough to a successor, or explicit branching
to a new target.
Consider this simple LLVM function:
define 164 @f(<8 x i8> %0) {
%sconv = bitcast <8 x i8> %0 to i64
ret 164 %conv
}
It takes, as a parameter, an 8-way vector of 8-bit elements called %0, type-casts it into a 64-bit
integer %conv, and then returns this value. Compiled to AArch64, this function is:
f:
fmov x0, do
ret
This code moves 64 bits of data from d0—an alias for the bottom half of the first 128-bit vector
register—into x0, a 64-bit general-purpose register. At this level, the positions of arguments and the
return value are implicit, as defined by the ABI. ARM-TV emits LLVM instructions that emulate the
ABI; the entire resulting lifted function—before optimization by LLVM—contains 320 instructions,
most of which are creating registers not used in this trivial example. If we manually remove the
unneeded instructions, the lifted code is:
define i64 @f(<8 x i8> %0) {
; allocate memory for register X0, initialize it with non-deterministic contents
%X0 = alloca 164, i64 1, align 8
%a0_0 = freeze i64 poison
store 164 %a0_0, ptr %X0, align 1

; allocate memory for register Q0, initialize it with non-deterministic contents
%Q0 = alloca 1128, i64 1, align 8

%a0_58 = freeze il28 poison

store 1128 %a0_58, ptr %Q0, align 1

; glue code: store the function parameter into the bottom of QO,
; the high bits remain non-deterministic

%a0_99 = bitcast <8 x i8> %0 to i64

store 164 %a0_99, ptr %Q0, align 1

; lifted implementation of "fmov x0, do0"
%a3_0 = load 1128, ptr %Q0, align 1
%a3_1 = trunc il28 %a3_0 to i64

store 164 %a3_1l, ptr %X0, align 1

; lifted implementation of "ret"
%a4_22 = load i64, ptr %X0, align 1
ret i64 %ad_22
}
By initializing memory with “freeze poison,” we leverage the underlying SMT solver to act
adversarially with respect to elements of the AArch64 machine state that a compiled function is not

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

369:8 Berger et al.

supposed to rely upon. In contrast, if we merely zeroed out the machine state, or even initialized it
to random values, we might miss bugs.

The important property of the glue code is that when it is combined with lifted ARM instructions,
the result is an LLVM function that (assuming correct compilation) refines the original LLVM IR.
And, indeed, after the lifted code is optimized by the LLVM middle-end, the resulting function is:

define i64 @f(<8 x i8> %0) {
%a0_99 = bitcast <8 x i8> %0 to i64
ret 164 %a0_99

}

Of course, this was a very simple example. In practice, we are rarely lucky enough to end up
with the same code that we started with.

An earlier attempt. Rather than relying on LLVM to optimize lifted code, the first version of
ARM-TV generated optimized Alive2 IR directly. For example, it generated high-quality SSA code,
elided the computation of condition code flags that were never used, collapsed redundant extend and
truncate instructions, etc. We did this because we wanted to avoid trusting the LLVM middle-end
optimizer. However, our design choice resulted in several problems. First, generating optimized
SSA code incurred algorithmic complexity in our lifter and also made the resulting code tricky to
read and debug. Second, to improve the quality of the lifted code, we had to implement additional
optimizations on Alive2 IR, creating still more complexity. Even so, our optimizer was much less
powerful than LLVM’s optimizer. Finally, since we do not have a serializer/deserializer for Alive2
IR, it was difficult to determine whether a given bug was in our lifter or in Alive2 itself. Generating
LLVM IR instead of Alive2 IR works around all of these problems, but adds a massive amount
of code to our trusted computing base. We have actually run into cases where ARM-TV detected
a refinement failure, where the root cause was an LLVM middle-end bug, instead of the kind of
LLVM backend bug that we are interested in, here. But this has not happened very many times.
Our current set of implementation tradeoffs appears to be workable.

2.2 Preserving Refinement During Lifting

At first glance, LLVM IR is an attractive target for lifting: it provides a wide variety of instructions
that are, overall, a reasonably close semantic match for AArch64 (and, of course, other ISAs).
But there’s a catch! In several important respects, the semantics of LLVM IR are specified more
loosely than are the semantics of native ISAs. This is a deliberate design choice; the intent is
to retain optimization power by avoiding early commitment to overly-tight semantics. In the
normal compilation flow, when LLVM IR is lowered to an actual ISA, its loose semantics admit
efficient refinements—this is the point. On the other hand, maintaining refinement while lifting
AArch64 to the LLVM level is less straightforward: we must be extremely careful to preserve
the tightly-specified meanings of the ARM instructions. As a concrete example, while each of
LLVM’s three basic shift instructions (shl, ashr, lshr) is refined by a single shift instruction in
every popular modern ISA, the converse does not hold: none of these three LLVM instructions
refines any machine-level shift instruction that we are aware of. We explain this situation in more
detail below.

Handling undefined behaviors in individual LLVM instructions. Consider the example in Fig. 1.
LLVM’s signed integer division instruction—sdiv—has undefined behavior when the divisor is
zero, or when the divisor is —1 and the dividend is INT_MIN. This LLVM instruction is refined by
the AArch64 sdiv instruction, which returns the same result as the LLVM instruction for all of
its defined cases, and returns zero for its undefined cases. However, when lifting the AArché4

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:9

instruction to LLVM, refinement can only be achieved by explicitly checking for the inputs that
would otherwise trigger undefined behavior. This requires nine LLVM instructions!

When a value is shifted past its bitwidth (e.g., x < 100, where x is a 64-bit value), LLVM specifies
that the result is a poison value. On the other hand, AArch64 specifies that the shift exponent is
reduced modulo 64, requiring ARM-TV to emulate that behavior by adding extra LLVM instructions
to the lifted code. Similar, but not necessarily identical, code would be required when lifting other
ISAs.

We also encountered refinement issues when lifting instructions such as fcvtzu: “floating-point
convert to unsigned fixed-point, rounding toward zero.” For floating point values that exceed the
range of the target integer type, this AArch64 instruction saturates the result to the largest unsigned
integer value. In contrast, the corresponding LLVM fptoui instruction produces a poison value
when the result is not representable (after rounding) in the target type. Luckily, since 2020 LLVM
has supported intrinsic functions that provide saturating floating-point to integer conversions, and
these are what we emit in ARM-TV.

Early in the course of this project, we tested several publicly available AArch64 to LLVM lifters,
in hopes of avoiding creating our own lifter. Alas, none of the lifters that we tried was correct
without respect to refinement.

Memory model issues. In LLVM IR, pointers carry provenance: additional information that acts
something like a capability, telling the compiler which memory regions that pointer is allowed to
be used to access [7]. On the other hand, at the assembly level, any pointer can be used to access
any part of the address space. During the development of ARM-TV, we had hoped that representing
values that are stored in ARM registers as integers, and then converting them to pointers just before
using them in a memory operation (which gives them wild-card provenance) would suffice to avoid
provenance-related problems, but this turned out to be over-optimistic. We ended up needing to
add a new assembly-level memory model to Alive2 that enforces an alternate set of memory rules
for lifted code. We describe it in detail in Section 2.8.

Preventing the spread of poison values. For the most part, LLVM-level poison values are all-or-
nothing; a value cannot be, for example, poisonous only in its sign bit. LLVM-level vectors are an
exception: each lane can independently be poisonous or not. If a vector containing any poison
lanes is type-cast to an integer type, the entire integer becomes poisonous. Early in ARM-TV’s
development, we were insufficiently cautious in casting between integers and vectors, leading to a
handful of spurious failures of refinement. In general, this is a difficult problem to solve because, of
course, at the assembly level there is no distinction between integers and vectors. Since it does not
seem likely to us that a fully general solution to this problem exists (such as recovering a well-typed
program from the assembly instructions emitted by LLVM), we simply try to keep the number of
vector-to-integer casts to a minimum while lifting code.

2.3 Checking ABI Rules

Although many lifters from various assembly languages to LLVM IR have been created, ours is
different in that it is designed to specifically check for translation failures that might otherwise go
unnoticed. These include:

e As mentioned in the previous section, we store non-deterministic values into all elements of
the ARM machine state that are not guaranteed by the ABI to hold specific values.

e We verify that the stack pointer is always 16-byte aligned, as required by the ABL

o We verify that the lifted function restores the value of all callee-saved registers.

"https://devblogs.microsoft.com/oldnewthing/20230904-00/?p=108704

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://devblogs.microsoft.com/oldnewthing/20230904-00/?p=108704

369:10 Berger et al.

e We render the contents of all caller-saved registers non-deterministic before returning from
a function call made by the lifted code.

At the LLVM level, function parameters and the function return value may possess the
“signext” or “zeroext” attributes. Although neither attribute has any semantics at the IR level,
at the ARM level they allow the function being lifted to assume that non-register-sized
parameters have been sign or zero-extended. Correspondingly, the function being lifted
is obligated to sign- or zero-extend its return value, when the relevant return attribute is
present. Also, of course, when the lifted function itself issues calls, obligations are placed
on it by parameter attributes, and it may assume that the return value attributes have been
implemented correctly.

A bug found using these checks—described in Section 3.5—was particularly interesting.

Where the ABI falls short. The AArch64 ABI document is somewhat limited in scope and fails
to specify behaviors for a number of situations that come up in practice for us. For example, the
AArch64 ISA can only load or store one, two, four, eight, or sixteen bytes at a time. However, at the
LLVM level, it is possible to load and store values of any bitwidth. When an LLVM load or store
does not match the bitwidth of an available memory operation, is it the responsibility of the store
side to zero out enough extra bits to make the store fit into an available memory operation, or
is it the responsibility of the load side to ignore garbage in these extra bits? The de facto answer
appears to be the former, and this is what we have supported in ARM-TV, but it is not documented
anywhere.

A second example of a gap in the ABIl is in the calling convention for vectors: it only specifies
how to pass vectors whose total size is 64 or 128 bits, and whose elements are 8, 16, 32, or 64
bits wide. Not only is the calling convention for other vector shapes unspecified, but we found
that in practice the LLVM AArch64 backend behaves erratically. For example, a 1-way vector of
Boolean values, which has type <1 x 11>, is passed in register w0, the bottom half of the first
general-purpose register. A 2-way vector of Boolean values (<2 x il>) is passed in v0, the first
vector register. A 3-way vector of Boolean values (<3 x i1>) is split across three general-purpose
registers: w0, wl, and w2. We inquired about this issue, and it does not appear to be the case that
the LLVM community is prepared to guarantee a stable ABI for these situations. Thus, we have
chosen to not support them in ARM-TV: we instead reject inputs that rely on under-specified vector
behaviors.

2.4 Lifting Instructions by Hand

Every AArché64 instruction inspects a subset of the machine state and then makes changes to
another subset. Some of these are quite simple, requiring only a few LLVM instructions to emulate
their effect. On the other hand, complex vector instructions can require a lot of code: one variant
of the tbl instruction—vectorized table lookup—turns into 157 LLVM instructions.

Based on descriptions found in the AArch64 ISA reference, we implemented around 1,400
instructions (using the somewhat fine-grained decomposition that LLVM uses internally) by hand.
Although the individual instructions were not difficult, the large surface area of this instruction set
made this into a time-consuming task.

2.5 Lifting Instructions Using ASLp

The ASLp partial evaluator [5] is well-suited for use in ARM-TV; it has been designed to process ASL,
resulting in simplified instruction semantics that can be easily integrated with software reasoning
tools such as ARM-Tv, providing its output in a minimal, imperative language. Moreover, it is
designed to do this while maintaining semantic equivalence with the original specification.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:11

bits(datasize) operandl
bits(datasize) operand2
bits(datasize) result;

for e = 0 to elements-1 (b) Reduced ASL after partial evaluation
bits(esize) elementl Elem[operandl, e, esizel;

Vinl; V[0] = ZeroExtend(add_vec(
Vim]; V[O][® +: 64], V[1][0 +: 64], 8), 128);

bits(esize) element2 Elem[operand2, e, esizel;

if sub_op then %a4_5 = load 1128, ptr %Q0, align 1
Elem[result, e, esize] = elementl - element2; %a4_6 = trunc 1128 %a4_5 to i64
else %ad4_7 = load i128, ptr %Ql, align 1
Elem[result, e, esize] = elementl + element2; %ad_8 = trunc 1128 %a4_7 to 164
V[d] = result; %a4_9 = bitcast i64 %a4_6 to <8 x i8>
' %a4_10 = bitcast i64 %a4_8 to <8 x i8>
. . . . %ad4_11 = add <8 x i8> %a4_9, %a4_10
(a) Relevant portion of ASL specification, handling %ad 12 = bitcast <8 x i8> %ad 11 to i64
vector addition and subtraction for combinations %a4_14 = zext i64 %a4_12 to 1128
of element size and element count store 164 %ad_14, ptr %Q0, align 1

(c) LLVM IR after translation

Fig. 2. Code snippets of the ASL, reduced ASL, and LLVM IR for the instruction add v@.8b, v@.8b, v1.8b
(simplified)

Given an instruction encoding, ASLp [5] will partially evaluate the architecture specification
and return the instruction’s semantics with a configurable level of detail. This configuration is
implemented through a variety of means, such as enforced invariants over the architecture’s
system registers, and it allowed us to customize the output of ASLp to suit the context of ARM-
Tv. For instance, we configured ASLp to produce instructions for AArch64’s least privileged
execution mode—informally its user-mode—by fixing certain bits in a processor state register.
Partial evaluation fails where it cannot statically show that this invariant is preserved for an
instruction. Additionally, ASLp’s configurable inliner enables the extraction of certain common
abstractions from the specification. For example, memory operations can be extracted without the
internal semantic details of alignment and address translation by configuring the inlining logic
to stop at high-level load and store operations. Getting abstractions from ASL to match up with
the internal structure of our lifter was critical to the successful integration of the existing formal
semantics into ARM-TV.

After successful partial evaluation, ASLp represents the resulting instruction semantics in a
textual encoding of the reduced ASL abstract syntax tree. To aid translation, this subset of ASL uses
very few fundamental operations: the basic scalar/vector integer and bitwise operations, along with
a number of intrinsics for floating-point. Then, on the ARM-TV side, we parse this and translate it
into equivalent LLVM IR. Alas, we had to implement this translator manually; there is not a formal
specification for the meaning of ASL constructs. Thus, the work required in developing a working
lifter is redirected from implementing instructions to implementing (a much smaller number of)
reduced ASL structures.

Generally, these reduced ASL structures closely correspond to primitive operations in LLVM IR,
with the caveat that care needs to be taken to ensure refinement is preserved (Section 2.2). Within
the ASLp lifter, vector operations were given special attention because of the particulars of their
specification in the ASL—this is discussed below. In total, the reduced ASL to LLVM translator is
implemented in just under 2,000 lines of C++ code. This process can be seen in Fig. 2, showing the
ASL, reduced ASL, and LLVM IR for a vector add instruction.

Optimizing for verification performance. Given the high degree of automation in ARM-TV, verifica-
tion performance is crucial. We modified ASLp to make its semantics more suitable for automated

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

369:12 Berger et al.

verification. Initially, vector instructions from ASL resulted in an inefficient representation; the ASL
specification describes vector instructions as loops, with the loop body slicing and concatenating
128-bit operands to perform a single vector element operation per iteration. ASLp would fully
unroll these loops, resulting in a series of operations extracting each vector element, performing
the operation, and then concatenating the results into a final bitvector. This undesired scalarization
led to complex LLVM IR and also poor verification performance.

We remedied this situation by extending ASLp to emit vectorized variants of its primitive opera-
tions. Such an extension was non-trivial as ASL lacks a notion of vectors—they are represented
as bitvectors with the element count/width specified on vector accesses—and ASLp relied heavily
on the assumption that all loops would be fully unrolled after early analysis stages. We modified
ASLp to retain loops from the original ASL specification through its various stages and introduced
a late vectorization pass. This pass is capable of recognizing various idioms common to the speci-
fication such as element-wise vector operations and reductions, as well as performing induction
variable substitutions. However, this is a best-effort approach, and ASLp defaults to unrolling if the
vectorization fails. We implemented this new pass in about 1,000 lines of OCaml code.

We identified and corrected various other deficiencies by comparing the two lifters’ outputs.
For instance, ARM-TV appears to produce more reliable verification outcomes when instruction
semantics are specified in terms of bitvectors with widths that are powers of two. We made minor
changes to ASLp to ensure the majority of produced operations conform to this property.

2.6 Lifting Data

ARM-TV must lift data as well as code. Consider this function that takes a vector of two 32-bit
integers, adds three to the first element and four to the second element, and returns the resulting
vector:
define <2 x i32> @f(<2 x i32>) {
%2 = add <2 x i32> %0, <i32 3, i32 4>
ret <2 x i32> %2

}
LLVM’s AArch64 backend lowers it to:

.section __TEXT,__literal8,8byte_literals

1CPIO_0:
.long 3
.long 4
.section __TEXT,__text, regular,pure_instructions
.globl _f
.p2align 2

f:

adrp x8, 1CPIO_0@PAGE
ldr dl, [x8, 1CPIO_O@PAGEOFF]
add.2s vo, vO, vl
ret

Instead of materializing the literal constants three and four as part of the instruction stream, the
backend has chosen to place them in real-only memory. Then, the generated code uses program-
counter-relative addressing to access the constants, which are loaded into d1—the bottom 64 bits of
the second vector register. To lift this assembly into LLVM IR that refines the original code, we
must lift the constants as well as the instructions. ARM-TvV’s LLVM-level version of the constant
data is:

%0 = type { i8, i8, i8, i8, i8, i8, i8, i8 }
@.LCPIO_0 = constant %0 { i8 3, i8 o, i8 0, i8 0, i8 4, i8 0, i8 0, i8 0 }, align 8

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:13

The first of these two lines declares an LLVM-level structure type containing eight 8-bit integers,
that is isomorphic to a pair of adjacent . long directives in AArch64 assembly. The second line
instantiates a read-only global variable of this type, containing the appropriate contents.

Despite being simple, this example shows that ARM-TvV must be able to propagate symbolic
address information for relocatable data items. It also needs to be able to handle:

(1) offsets from these data items,
(2) structures that contain a mixture of concrete and symbolic data, and
(3) data that contain cyclic symbolic references.

While none of these things is individually particularly complicated to support, we mention them to
demonstrate the depth of implementation detail that is necessary to support lifting AArché64 code
found in the wild.

Symbolic references and ASLp. The requirement to handle symbolic references stems from our
design decision for ARM-TV to process “slightly symbolic” assembly code. In contrast, the ARM
MRA, and also our ASLp-based lifter that is derived from it, have semantics for fully concrete
machine code, where all symbolic references have been resolved by the assembler and linker: every
instruction is no more and no less than 32 bits of data. To bridge this impedance mismatch, our
ASLp-based lifter simply delegates symbolic instructions to the non-ASLp lifter. In most cases, their
semantics are straightforward and easily tested, so this is an acceptable compromise.

2.7 Lifting Function Calls

From assembly, it is not possible to precisely determine the types of the arguments to a function
call, nor is it even possible to precisely determine the number of arguments. Rather than using
heuristics, we exploit LLVM-level information from the original function we were given. Then,
lifting a function call becomes simply a matter of respecting the ABI, as discussed in Section 2.3,
although now we are implementing the caller side, not the callee side.

Lifting indirect function calls is trickier: since the function being called is only an address that
resides in a register, the name of the called function is unavailable, and thus we cannot look
up the function’s signature. To handle this case, we use LLVM’s debug information to find the
LLVM-level indirect call from which the ARM-level indirect call came from, and we retrieve its
signature that way. Similarly, we use this mapping to determine the values of several call-site-
specific function attributes that, when they were present in the original LLVM code, will trigger a
failure of refinement if they are not also present in the lifted code.

As the first example in Section 1 showed, some function calls exist only on the LLVM side, and
are expanded inline on the ARM side. It can also be the case that the LLVM backend generates
a library call on the ARM side, where there is no corresponding function call on the LLVM side;
memset() and memcpy() are the most common examples. As long as Alive2 has models for the
behavior of the functions involved, neither of these conditions is problematic for ARM-TV.

One final awkward case that we have encountered is LLVM-level functions that require “immedi-
ate” arguments: these must be literal constants, and they have no representation at the ARM level.
For example, one of LLVM’s memcpy() intrinsics has this signature:

declare void @llvm.memcpy(ptr %dst, ptr %src, i64 %len, il %isVolatile)
The last argument, %isVolatile, is used by the LLVM backend but is not actually present on the
ARM side. When lifting a memcpy() call, it is necessary to add this argument to the lifted code.

There can be no principled mechanism for inferring the existence of this kind of argument; we
simply recognize (by name) that such a function is being called and add the necessary argument(s).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

369:14 Berger et al.

2.8 Supporting an Assembly-Level Memory Model in Alive2

LLVM IR has high-level features not present in assembly. For example, LLVM uses a logical memory
model, where pointers are represented as a pair: an object identifier and an offset into the object. A
pointer can only be used to access the object that it explicitly references: even if the program learns
or guesses its memory layout, it is not allowed to use a pointer derived from one object to access a
different object [7]. These semantics simplify alias analysis and allow LLVM to exploit undefined
behaviors in languages like C/C++ that expose a logical memory model to program developers. In
contrast, a pointer in assembly is just an integer that can be used to index the entire address space.
Consider this C code:

void fn(int *p, int =*q) {

if (p==q)
*p = 3;
else
*q = 3;

}

It can be (and, in fact, is by LLVM®) compiled into the following assembly, that has an uncondi-
tional store to the second argument:

fn:
mov w8, #3
str w8, [x1] ; store though q, which is in x1 as specified by the ABI
ret

This assembly code is correct: when the pointers are equal, we can store to either p or g. Since in
the else branch we have to store to q, we can remove the branch altogether and do a single store
to g. While this reasoning is valid in the assembly world, lifting it to LLVM IR is not sound. The
main reason is that two pointers comparing equal does not imply they are equivalent since pointer
equality only compares addresses and not provenance. Hence, pointer q may be out-of-bounds
but have the same address as p, making it undefined behavior to dereference q. Thus, not only is
the obvious lifting of this AArch64 into LLVM incorrect, but also there is not enough information,
even in principle, at the assembly level to reconstruct something that respects LLVM-level memory
rules.

Beyond provenance, there are other mismatches between the semantics of LLVM IR and assembly
that make it impossible to represent all the relevant details of assembly code for verification in
LLVMIR. Therefore, we decided to extend Alive2 by adding a new assembly mode. When a function
is tagged as having been lifted from assembly, Alive2 changes its semantics as follows:

e The result of function calls is never undef or poison.

e The value of the function arguments is never undef or poison.

e Bytes loaded from memory are never undef or poison.

e Sub-byte accesses trigger undefined behavior (since ARM assembly does not support them).

e All pointers are treated as if they were physical (i.e., resulting from an integer-to-pointer
cast) and have full provenance (i.e., they can access any valid memory region).

Furthermore, assembly mode changes Alive2’s overall refinement criteria that are used to decide
whether an assembly function correctly implements the original function in LLVM IR. Two changes
were required:

e Byte refinement: allow type punning between integers and pointers to support cases where,
for example, the IR stores a pointer to memory but the assembly program stores an integer.

8https://gcc.godbolt.org/z/snsbvvgMK

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://gcc.godbolt.org/z/snsbvvqMK

Translation Validation for LLVM’s AArch64 Backend 369:15

e Pointer refinement: only the addresses contained in the pointers are checked for equal-
ity. Alive2 does not consider whether the pointers are both logical or physical during the
refinement check.

Prior to our work, Alive2 did not support physical pointers at all. Our implementation follows Lee
et al’s description [8], except that we do not support the inbounds attribute for the getelementptr
pointer arithmetic instruction, since it never appears in lifted code.

We additionally changed how Alive2 treats sub-byte memory accesses. Alive2 originally im-
plemented sub-byte stores by extending them to a byte boundary, padding out the value with
poison bits. Similarly, sub-byte load operations would mask out the padding bits. This was mostly
sufficient to emulate the semantics of LLVM IR where the loaded value is poison if it was stored
with a different size (e.g., storing a 5-bit integer and then loading a 4-bit integer yields a poison
value). This encoding, however, did not capture the fact that the position of the padding bits should
be non-deterministic since different ABIs may implement padding differently. It also did not allow
us to capture the intricacies of ARM’s ABIL.

We changed the encoding of a byte in Alive2 to record two additional pieces of information:
(1) the number of stored bits, and (2) the byte number (applicable to stores of integers larger than
eight bits). It then becomes obvious when a load should be poison. For efficiency, these fields are
only added to the SMT encoding for programs that do any sub-byte accesses.

The undocumented, LLVM-specific AArch64 ABI assumes that every sub-byte store is zero-
extended to the next byte boundary. Since LLVM takes advantage of this ABI contract when loading
sub-byte data (it does not mask out the padding bits, since they are assumed to contain zeroes), we
need to verify the store side of this contract. We extended Alive2’s memory refinement criteria to
check that a sub-byte store in the original LLVM IR is refined by a byte on the assembly side if and
only if the assembly byte contains zeros in its padding bits. Moreover, we added an extra axiom to
ensure that both the initial memory and the memory after a function returns respect this part of
the ABI. Together, these changes enable modular verification of refinement; that is, verifying each
function separately implies correctness of compilation of the whole program.

Unfortunately, the changes described in this section made Alive2 very slow: it was sometimes
incapable of validating functions containing two memory operations. The next section describes
subsequent optimization work we did to recover verification performance.

2.9 Optimizing the Assembly Memory Model

SMT solvers are not magic: unless problems posed to them are encoded carefully and efficiently,
they use an unacceptable amount of CPU time or memory. In particular, the memory model is a
bottleneck for Alive2, and more so when dealing with physical pointers (i.e., all pointers for code in
assembly language). The core problem is that Alive2’s previously existing memory optimizations
were based on LLVM’s logical (object+offset) model. For example, if Alive2 knows that a pointer
is somewhere within a 30-byte memory object, it can be represented using just five bits. Physical
pointers, by their nature, require the full 64-bit width. More importantly, physical pointers have
full provenance. That is, they can potentially point anywhere in memory, whereas logical pointers
can usually only access a small number of blocks. This makes alias analysis much more difficult for
the assembly memory model.

This section describes two new memory optimizations that we implemented within Alive2, that
reduce the size of the encoding of memory operations by an order of magnitude in many cases.
Together, they make the encoding of physical pointers almost as efficient as the encoding of logical
pointers. We have pushed these optimizations to upstream Alive2.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

369:16 Berger et al.

Synchronizing alignment. AArch64, like x86-64, does not require most memory operations to be
aligned. For example, it is legal to load a 64-bit value from memory address 0x3. Even so, LLVM IR
usually comes with ABI-mandated alignment requirements on memory operations. Hence, at the
LLVM level, 64-bit loads are usually required to be given pointers that are eight-byte aligned.

Prior to our work, Alive2 had an optimization that increased the size of memory words in the
SMT encoding when this was justified by the alignments and access sizes in the code being analyzed.
For example, if a function contains no memory accesses smaller than 32 bits, and all loads and
stores are aligned on four-byte boundaries, then instead of representing memory as an array from
offsets to bytes, it would represent memory as an array from offset/4 to 32-bit words. This cuts
the size of the encoding by a factor of four, since a four-byte load is now a single SMT expression
instead of a concatenation of four one-byte loads. It also makes offsets smaller by two bits.

Alas, ARM-TV defeated this important optimization because it lifts all ARM-level memory opera-
tions to LLVM instructions with one-byte alignment.’ To recover this optimization, we implemented
a preprocessor that attempts to align the control flow of an LLVM function and its lifted twin,
in order to propagate the alignment of the original memory operations to the lifted ones. This is
sound: if addresses were not aligned, the original function would trigger UB (undefined behavior).
Hence, the lifted code can assume that any address accessed in the original IR is properly aligned.

To align the functions, we use a simple algorithm that first marks the entry basic blocks (BBs) of
the two functions as twins and follows the control flow in tandem. If a source BB conditionally
jumps to BB1 or BB2, and a twin assembly BB jumps to BB1’ or BB3’, we mark BB1/BB1’ and
BB2/BB3’ as twins. This step is repeated until no more BBs can be matched. The names of the BBs
are not meaningful: we match only the control flow graph (CFG) structure. In each BB and its twin,
we check if they have the same memory operations. If so, we copy the alignment from the original
BB, otherwise we give up on that BB and all successors.

This relatively simple, dataflow-insensitive algorithm is usually sufficient, but we have found
some cases where the compiler backend changes the order of load operations, leading to false
alarms. However, it is always possible to disable the alignment inference heuristic and check if the
bug is still reported.

Inbounds alignment. The second significant inefficiency in Alive2’s memory encoding came from
pointers with full provenance—which is all pointers in code lifted from assembly. The encoding gets
substantially larger than with logical pointers because 1) pointers with full provenance can alias
any memory, and 2) the offset of a physical pointer within a memory block must be computed using
a full 64-bit subtraction between the pointer and the address of the beginning of the block. These
features, together, are necessary to account for the worst-case scenario where a full-provenance
pointer is out of bounds and can point into another block. However, this is rare, and only compiler
optimizations that propagate pointer equalities need to deal with this case.

We improved Alive2’s encoding by first propagating UB conditions from the original to the lifted
function. When we start doing symbolic execution of a new basic block, we check if the original
function has a BB with the same path from the function entry and the same number of function
calls for each function (to account for possibly non-returning functions). If so, we copy all the UB
triggered in that BB up to the first possibly non-returning function. This is sound because LLVM
uses time-traveling UB semantics, in which UB executed in the future can be brought earlier. We
use function calls as barriers, since if they do not return we would not execute UB that occurs after
them.

9We cannot simply assume that, for example, a 4-byte load in ARM assembly is aligned on a 4-byte boundary. LLVM’s
AArché64 backend freely inserts misaligned memory operations when this is convenient. The memcmp() example in Section 1
illustrates this: the 1dr instructions that perform 8-byte loads will be misaligned whenever the function arguments are.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:17

Consider this example:

void fn(int *p, int =*q, int #r) {

*p=3;
*q = 4;
g0);

*xr = 5;

}

Here, we would add as assumptions that p and q must be inbounds of a valid memory block
(if they are not, then the original LLVM IR is undefined, and anything can refine it). We cannot
assume that r is inbounds because it may not be dereferenced in the original function if g does not
terminate.

When generating the SMT encoding for memory operations in the lifted code, we issue an SMT
call to check if the assumptions imply that the pointer is inbounds. In our experiments, these SMT
calls returned quickly because the constraints are simple bit-vector inequalities over offsets and
memory block sizes plus no-overflow constraints.

2.10 Limitations of ARM-TV

ARM-TV focuses on sequential user-mode code. It does not support processor mode changes, priv-
ileged instructions, inline assembly, thread-local storage, C-style variadic functions, float types
other than IEEE 754 single and double precision, non-default rounding modes for floating point
instructions, or structures in function arguments and return values. We have also inherited several
limitations from Alive2, such as not supporting unbounded loops, exception handling, or type-based
aliasing information.

3 Evaluation

We return to the research questions posed in Section 1, answering them based on a collection of
experiments and on our experience using ARM-TV in anger, to find bugs in upstream LLVM.

3.1 Experimental Setup

For the experiments in Sections 3.2-3.4, we gathered two collections of functions in LLVM IR.
First, we took all of the functions in the LLVM unit test suite and filtered out the ones that are
unsupported by upstream Alive2 and also those that cannot be lowered to AArché4 (because,
for example, they contain inline assembly for a non-ARM architecture). This left us with 232,981
functions. We chose these functions for our evaluation because the LLVM community has implicitly
decided (by including these functions in the test suite) that it is important to compile them correctly.
The second collection of functions that we gathered came from compiling the C and C++ programs
in SPEC CPU 2017 to LLVM IR on an ARM-based MacBook Pro, using the recommended baseline
optimization flags.!® This produced an additional 87,738 functions. For this collection of functions,
we did not filter out those that are unsupported by upstream Alive2, but rather simply used every
function that could be turned into ARM instructions. We chose the SPEC benchmarks because they
have been selected, independently of our work, to be a representative collection of software.

We ran our experiments on an AMD EPYC 7502 machine (Zen 2 microarchitecture) with 64
hardware threads and 256 GB of RAM, running Ubuntu Linux version 24.04. We limited each
invocation of ARM-TV to 10 minutes of CPU time and 4 GB of virtual memory. ARM-TV’Ss run time is
dominated by Z3’s satisfiability checks—the rest of its tasks are relatively fast.

10clang -03 -march=native -fno-strict-aliasing -fno-unsafe-math-optimizations

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

369:18 Berger et al.

LLVM Unit Tests SPEC CPU 2017
60000 EEm Successful Verifications | 14000 1 Emm Successful Verifications |
I Unsupported by arm-tv I Unsupported by arm-tv

n = Timeouts »n 120007 m Timeouts 1
9 50000 4@
] @ 10000 1
2 40000 3
8 8 80001
‘5 30000 kS
5 5 60001
£ £
E 20000 1 S 4000 1
= =

10000 2000

Y ® O D G L VRS T SR S VR VR S S W R SR S A
AN N BN R A GRN I SR Y %G AP L0 A S S
N & A7 LYV GX AR R M & A7 LYV AT R
SRR T VAR
RS RS
Function size, in AArch64 instructions Function size, in AArch64 instructions

Fig. 3. Translation validation outcomes for functions from the LLVM unit test suite and from SPEC CPU
2017, binned according to the number of ARM instructions in each function

3.2 RAQ1: Can We Create a Practical Translation Validation Tool for LLVM’s AArch64
Backend, Without Modifying LLVM?

One sense in which ARM-TV is practical is that it is easy to use: one runs it on an LLVM module (a
container for functions, variables, and data in LLVM IR, that is analogous to a translation unit in
C or C++), telling it which function’s translation should be validated. ARM-TV loads the module,
lowers the selected function to AArch64 assembly, validates the translation, and reports its results.
This is all completely automated. In the common case, the translation validates as correct and there
is nothing more to do. When ARM-TV signals a failure of refinement, it provides a counterexample—a
collection of memory states and function arguments—that causes the miscompilation to manifest
itself during a concrete execution.

Fig. 3 shows the outcomes of running ARM-TvV on the LLVM unit tests and on the functions
from SPEC CPU 2017, binning the results by function size as measured by the number of ARM
instructions in each function. These results are all from the ASLp version of ARM-TV; the results
from the non-ASLp version of ARM-TV are very similar. We omit them here but explicitly compare
the two versions of ARM-TV in Section 3.4.

These graphs show that, as expected, functions from SPEC tend to be larger than those from
the LLVM unit tests. Moreover, code from SPEC is more difficult to verify: it generates many more
timeouts than does the LLVM unit test suite, even for functions of comparable size. This is because
SPEC code uses pointers heavily and commonly uses features such as function pointers and multiple
levels of indirection that are difficult for Alive2 and Z3 to handle.

For the LLVM unit tests, the most common unsupported features blocking ARM-TV were:

e vector parameter type with unstable ABI (55% of unsupported functions)
e float type other than single or double (14%)

e function argument type other than integer, float, pointer, or vector (4%)
e variadic function argument (4%)

e structure in return value (3%)

In contrast, for SPEC, the most commonly seen unsupported features blocking ARM-TV were:

e LLVM instruction unsupported by Alive2, usually related to exception handling (47% of
unsupported functions)

e variadic function argument (16%)

e LLVM attribute unsupported by Alive2, usually noalias (10%)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:19

LLVM Unit Tests SPEC CPU 2017
1004 N 1004
ﬁ 1
804 801
T o
£ 601 £ 601
a a
€ €
<] S
O 404 Y 404
R B
20 201
—— With Alive2 memory optimizations —— With Alive2 memory optimizations
0 —— Without Alive2 memory optimizations 04 —— Without Alive2 memory optimizations
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time Taken (s) Time Taken (s)

Fig. 4. CDFs of completion times for ARM-Tv invocations before and after our Alive2 memory subsystem
optimizations. Each invocation timed out after 10 minutes (600 seconds).

e personality function not supported by Alive2 (9%)
e aliasing-related LLVM metadata unsupported by Alive2 (7%)

3.3 RQ2: Can We Optimize Alive2 for Assembly-Style Code that Freely Intermixes
Integers and Pointers, that Defeat Many of Its Existing Memory Verification
Optimizations?

Fig. 4 shows CDFs for ARM-TV completion times before and after we implemented the assembly-

focused memory model optimizations from Section 2.9. For the LLVM unit test suite, these were

highly effective, reducing the percentage of translation validation calls that time out from 7.0% to

3.1%. However, for functions from SPEC CPU 2017, our optimizations had less of an effect: timeouts

were reduced from 43% to 40%. It appears that the significantly larger, more pointer-intensive

functions from SPEC are simply less amenable to our optimizations than are the relatively simple
functions from the LLVM unit test suite.

3.4 RQ3: What Are the Tradeoffs Between Writing Semantics for AArch64 Instructions
by Hand and Deriving Semantics from ARM’s Machine-Readable Architecture
Description?

Our hand-written code for lifting individual AArché64 instructions is 8.1 kloc, out of ARM-TV’s total
size of 14.4 kloc. We support about 1,400 instructions (using LLVM’s internal decomposition of this
instruction set) but there is considerable overlap between these, that we have exploited to make
our implementation as concise as possible. In contrast, our ASLp-based lifter required about 2 kloc
of C++, and again this code was not particularly complicated or difficult. In fact, since this code
was able to take advantage of subroutines that we had created to support our hand-written lifter, it
was generally quite pleasant to write.

Correctness. 8,100 lines of fiddly, bit-twiddling C++ are bound to contain bugs and, in fact, we
discovered numerous bugs in our hand-written lifter by testing it. All of these have been fixed, but
focused testing of our semantics was definitely necessary. In contrast, our ASLp-derived lifter was
(empirically) almost completely correct by construction. We did have a very small number of bugs
in cases where an ARM instruction maps to a complex LLVM operation, such as a floating point
rounding operation—these mappings had to be done by hand, creating opportunities for error.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

369:20 Berger et al.

LLVM Unit Tests SPEC CPU 2017
1001 F 100

60

80

60 1

40

40

201 20

Percentage of Verifications Completed
Percentage of Verifications Completed

ASLp lifter ASLp lifter
0 —— Hand-written lifter 04 —— Hand-written lifter
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Taken (s) Time Taken (s)

Fig. 5. CDFs of completion times for ARM-TV invocations using the hand-written and ASLp-derived instruction
lifters. Only one line is apparent in the left-hand graph because the lines almost totally overlap.

Completeness. Although our hand-written lifter is not missing support for any instruction gener-
ated by LLVM’s AArché64 backend when compiling SPEC CPU 2017, running ARM-TV on LLVM’s
unit test suite reveals that it is missing 641 instructions. These are predominantly vector and floating
point operations. Counting the same way, our ASLp-based lifter is missing only 11 instructions, all
relating to thread synchronization, pointer authentication, and processor feature reporting. All of
these things are purposefully out of scope for ARM-TV.

We looked at how our ASLp-derived lifter works for the LLVM unit tests that cannot be processed
using ARM-TV’s hand-written lifter, due to an unsupported instruction. 54% of the time, the original
LLVM IR contains an intrinsic not yet supported by Alive2, such as @llvm.aarch64.cls64 or
@llvm.aarch64.neon.urshl.v2i32. 17% of the time, the code generated by the ASLp lifter times
out, for example due to a floating point operation or a complicated vector operation. Finally, in just
four cases containing an ARM instruction missing from our hand-written lifter, code produced by
the ASLp-based lifter can be validated as a correct translation of the original LLVM IR.

Verification performance. One reason we implemented two different lifters is that we wanted to
enable a comparison between them in terms of verification performance. The specific question we
wanted to answer is: Does generating idiomatic LLVM IR in a hand-written lifter result in better
verification performance than we would get by mechanically following the ARM MRA?

Indeed, we initially noticed that code lifted using ASLp resulted in significantly more timeouts,
compared to code produced by our hand-written lifter. However, after implementing the optimiza-
tions described in Section 2.5, much of the performance gap between the two lifters disappeared.
Fig. 5 illustrates our current results where the number of timeouts for LLVM unit tests is virtually
unchanged by the choice of lifter. For functions from SPEC CPU 2017, the ASLp lifter causes an
additional 2% of ARM-TV invocations to time out.

3.5 RQ4: Does LLVM’s AArch64 Backend Have Latent Miscompilation Bugs that We
Can Discover Using Translation Validation?

We did not discover any miscompilations by running ARM-TV on code from SPEC CPU 2017. We
did, however, find a small number of LLVM bugs using functions that are already part of the LLVM
unit test suite. This is possible because ARM-TV is a very strong correctness oracle, compared to the
syntax- and crash-based oracles that are used in the test suite. Mostly, however, we found bugs by
using ARM-TV together with fuzzers. Our bug-finding effort was conducted during April 2022-July

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:21

2025 and was not a controlled experiment. Rather, we opportunistically found and reported bugs as
we had time, and when we wanted a top-level sanity check that ARM-TvV was working as intended.

To find bugs, we primarily used existing randomized compiler testing tools: YARPgen [12], which
generates random C code, and also alive-mutate [2] and IRFuzzer [18]; both mutation-based fuzzers
for LLVM IR. For the mutation-based tools, our seed corpus was the functions in the LLVM unit
test suite. We also wrote a few simple test-case generators to ensure that, for example, memory
and arithmetic operations of every bitwidth in 1..64 were correctly supported by the AArch64
backend. These custom tools were invaluable for gaining confidence in ARM-Tv but did not lead to
the discovery of new LLVM bugs.

Table 1 summarizes the results of our testing campaign; it only includes miscompilation errors, we
ignored compiler crashes while doing this work. The “categories” column contains our (somewhat
subjective) judgments about which aspects of the semantics of LLVM IR one would need to
understand, in order to understand the bug. Three of the categories are abbreviations: FP (floating
point), UB (undefined behavior), and ABI (application binary interface). Most of the bugs that
we found were fixed by changing source files that are shared across multiple LLVM backends.
Hence, many of these bugs could have affected multiple backends (in some cases, the developers’
discussion at the Github issue explicitly indicates that this was the case). Out of these 45 bugs, 39
have been fixed. Many of the bugs (including all of the unfixed ones) involve undefined behavior—a
historically problematic area for the LLVM optimizer [9]. During the course of this work we also
found and reported several miscompilation bugs in LLVM’s middle-end optimizer; we did not
include these in our table.

Some of the bugs that we found were straightforward. For example, bug #55284 led the “global
instruction selection” mode of LLVM’s AArch64 backend!! to miscompile this function:

define i32 @f3(i32 %0) {
%2 = or i32 %0, 65536
%3 = and i32 1520220788, %2
ret i32 %3

}
as:
f3:
orr w8, wO, #0x10000
and wO, wO, w8
ret

This ARM code, for example, returns 1 instead of 0 when passed 1 as an argument. In contrast, a
correct compilation of this function is:

_f3:
mov w8, #47732
movk w8, #23196, lsl #16
and wO, wO, w8
ret

Other bugs were more involved. Consider this function:
define i32 @f(il signext %0, i32 %1) {
%3 = zext il %0 to i32
%4 = sub i32 %1, %3
ret i32 %4
}
The first function parameter, %0, has type i1: a one-bit integer. This corresponds to a Boolean
parameter in C++. The signext attribute attached to %0 has no semantics at the level of LLVM

Enabled by default in Apple’s clang at some optimization levels.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://github.com/llvm/llvm-project/issues/55284

369:22

Berger et al.

Table 1. Miscompilation bugs that we found using ARM-Tv and reported to LLVM developers. The Github IDs
are links into the LLVM project’s issue tracker. Bugs marked with an asterisk (*) are discussed in Section 1.3

or 3.5.
Github ID Affected Operation(s) Categories Fixed?
55003 funnel shift Integer, UB Yes
55129 right shift Integer Yes
55150 integer/FP conversions Integer, FP Yes
55178 left shift + comparison Integer, UB Yes
55201 rotate-like code Integer Yes
55271 unsigned maximum + remainder Integer, UB No
55284* or + and Integer Yes
55287 urem + udiv Integer Yes
55296 funnel shift Integer Yes
55342 arithmetic on constants Integer Yes
55484 arithmetic Integer Yes
55490 arithmetic on constants Integer Yes
55627 arithmetic on constants Integer Yes
55644 multiplication with overflow check Integer Yes
56664 funnel shift Integer Yes
57181* sign extension Integer, ABI Yes
57256 funnel shift Integer, UB No
58109 saturating subtraction Integer Yes
58321 arithmetic Integer, UB No
59898 funnel shift Integer Yes
59902 signed maximum Integer Yes
72475 “select” instruction Integer, UB Yes
74248* vector insertion Integer, Vector, Memory, UB Yes
75557 vector insertion Integer, Vector, Memory, UB Yes
76769 vector reduction Integer, Vector Yes
77169 vector signed remainder Integer, Vector Yes
78383 vector extraction Integer, Vector, Memory, UB Yes
78477 vector inspection Integer, Vector, Memory Yes
84718 arithmetic Integer Yes
88959 vector extraction Integer, Vector, Memory, UB No
88784 vector absolute difference Integer, Vector Yes
88950 saturating left shift Integer Yes
90242 array writes Integer, Memory Yes
90245 subtraction Integer, UB No
90532 FP compare FP Yes
90936 store coalescing Integer, Memory Yes
96366 arithmetic Integer, UB Yes
121372 arithmetic Integer, Vector Yes
125989 vector shuffle Integer, Vector Yes
133928 arithmetic Integer Yes
136746 funnel shift Integer Yes
137254 arithmetic Integer, UB Yes
137998 FP compare FP Yes
145360 sdiv + srem Integer, UB Yes
145363 loads with range metadata Integer, Memory, UB No

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://github.com/llvm/llvm-project/issues/55003
https://github.com/llvm/llvm-project/issues/55129
https://github.com/llvm/llvm-project/issues/55150
https://github.com/llvm/llvm-project/issues/55178
https://github.com/llvm/llvm-project/issues/55201
https://github.com/llvm/llvm-project/issues/55271
https://github.com/llvm/llvm-project/issues/55284
https://github.com/llvm/llvm-project/issues/55287
https://github.com/llvm/llvm-project/issues/55296
https://github.com/llvm/llvm-project/issues/55342
https://github.com/llvm/llvm-project/issues/55484
https://github.com/llvm/llvm-project/issues/55490
https://github.com/llvm/llvm-project/issues/55627
https://github.com/llvm/llvm-project/issues/55644
https://github.com/llvm/llvm-project/issues/56664
https://github.com/llvm/llvm-project/issues/57181
https://github.com/llvm/llvm-project/issues/57256
https://github.com/llvm/llvm-project/issues/58109
https://github.com/llvm/llvm-project/issues/58321
https://github.com/llvm/llvm-project/issues/59898
https://github.com/llvm/llvm-project/issues/59902
https://github.com/llvm/llvm-project/issues/72475
https://github.com/llvm/llvm-project/issues/74248
https://github.com/llvm/llvm-project/issues/75557
https://github.com/llvm/llvm-project/issues/76769
https://github.com/llvm/llvm-project/issues/77169
https://github.com/llvm/llvm-project/issues/78383
https://github.com/llvm/llvm-project/issues/78477
https://github.com/llvm/llvm-project/issues/84718
https://github.com/llvm/llvm-project/issues/88959
https://github.com/llvm/llvm-project/issues/88784
https://github.com/llvm/llvm-project/issues/88950
https://github.com/llvm/llvm-project/issues/90242
https://github.com/llvm/llvm-project/issues/90245
https://github.com/llvm/llvm-project/issues/90532
https://github.com/llvm/llvm-project/issues/90936
https://github.com/llvm/llvm-project/issues/96366
https://github.com/llvm/llvm-project/issues/121372
https://github.com/llvm/llvm-project/issues/125989
https://github.com/llvm/llvm-project/issues/133928
https://github.com/llvm/llvm-project/issues/136746
https://github.com/llvm/llvm-project/issues/137254
https://github.com/llvm/llvm-project/issues/137998
https://github.com/llvm/llvm-project/issues/145360
https://github.com/llvm/llvm-project/issues/145363

Translation Validation for LLVM’s AArch64 Backend 369:23

IR, but during code generation it permits the compiler to assume that this function’s caller has
sign-extended the first function argument up to 32 bits. The problem is that this LLVM-level
requirement interacts with ARM’s ABI document, which specifies that Boolean function arguments
are zero-extended to eight bits. Lacking documented guidance about the relative precedence of
these rules:

e The default “selection DAG” mode of LLVM’s AArch64 backend assumed that %0 was sign
extended all the way from one bit to 32 bits.

e The global instruction selection mode of the AArch64 backend—and also ARM-Tv—assumed
that %0 was zero extended to eight bits before being sign extended to 32 bits.

We detected the issue because ARM-TV signaled a miscompilation of the function above when it
was translated by the selection DAG backend. After some discussion among LLVM stakeholders,
it was agreed that sign extension from one bit to 32 bits was the desired behavior, and the global
instruction selection backend’s behavior, as well as ARM-TV’s, were changed (#57181).

At present, our fuzzing campaign has reached a stable state where it is no longer finding very
many old bugs in LLVM’s AArch64 backend. This indicates that—within the limits of the available
tools and resources—we are starting to mine out the bugs in this code base. This is the desired
endgame for a randomized testing campaign!

4 Discussion and Future Work

Is ARM-TV trustworthy? We wrote more than 7,500 test cases for ARM-TV, and we also look carefully
at the alarms that it produces when we run it on fuzzer-generated test cases. Even so, we worry
about missed alarms regarding cases where we neglected to check, or only incompletely check,
some ABI property of interest. We do not even have a list of these properties that we are certain is
complete. What we want is an ABI specification that is tight in the sense that we can prove that a
callee will function correctly if its callers meet their obligations, and vice versa. We would love to
see more work along the lines of Wagner et al. [25].

Can we improve scalability? As Figure 3 shows, ARM-TV has trouble validating the translation
of medium to large functions. There is little that we can do about this at the level of ARM-TV—
improvements will have to come from Alive2 or Z3. Although Alive2 has already been subjected to
extensive optimization effort, many opportunities remain. For example, better program alignment,
including speculative alignment, would allow us to break functions into many small pieces, making
vegen and obligation discharge much faster. Also, Alive2’s memory model is still far from optimal.
Alas, there is no single optimal encoding for all programs, but rather this depends on details such
as the ratio of loads to stores in a particular program. Being able to dynamically switch between
encodings would (we believe) improve performance significantly.

Is lifting the right strategy? We don’t know. Implementing ARM-TV as a lifter was convenient: by
reusing Alive2’s LLVM semantics and refinement checking machinery, we were able to be up and
running rapidly. Moreover, lifting to LLVM IR allowed us to reuse LLVM’s powerful middle-end
optimizer. On the other hand, the issues we discussed in Sections 2.2 and 2.8 were awkward and
created some implementation complexity for us. An alternative to lifting would be lowering both
LLVM IR and AArché64 code into a common semantic framework and establishing refinement
conditions there. This would avoid the impedance mismatches that we encountered, at the cost of
writing a significant amount of new code.

If we wanted to formally verify ARM-TV, then our current implementation strategy would be a
hopelessly bad choice. In that case, we would have built it inside of a proof assistant.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://github.com/llvm/llvm-project/issues/57181

369:24 Berger et al.

Can ARM-TV support other LLVM backends? We are in the process of adding support for LLVM’s
64-bit RISC-V backend. So far, we support RV64I—the core integer ISA—in addition to its standard
B (bit manipulation) and M (multiplication and division) extensions. RISC-V is extremely simple
compared to AArché4, although we have not yet started on its floating point or vector extensions.
The modifications to Alive2 that we made to support AArché4 are sufficient to handle scalar RISC-V
code, and we believe they would also be sufficient for other general-purpose ISAs, such as x86-64.
On the other hand, Alive2 does not yet support the scalable vectors that RISC-V’s vector ISA uses,
nor does it support multiple address spaces—so we cannot yet support either GPUs or Harvard
architecture microcontrollers such as AVR.

Can we support inline assembly? Alive2 already has rudimentary support for inline assembly,
but we have not yet attempted to make use of it in ARM-Tv. The inline instructions themselves can
easily be assigned semantics using our lifter, but we would still need to formalize the interface
between LLVM IR and assembly. Recoules et al. [16] describe an approach that seems like it would
work for us, as well.

Can we support concurrent programs? We do not envision extending ARM-TV to support reasoning
about multiple threads at once. On the other hand, it should be possible to validate the modular
rules for concurrency-related transformations. For example, if an LLVM backend moved a load or
store around a synchronization instruction in an illegal fashion, we could signal an error.

5 Related Work

Since translation validation [13-15, 19, 21-23] requires minimal, if any, support from the compiler
being validated, it is an attractive technology for working with existing production compilers like
LLVM and GCC that are not obviously amenable to direct application of formal methods. In this
section we look at prior research that relates to, and in some cases inspired, our current work.

Numerous lifters from assembly languages to LLVM IR have been developed, primarily by the
security community; Liu et al. [11] describe and evaluate several of them. Here we focus on previous
work that performed lifting for purposes of verification. Lam and Coughlin created ASLp, which
generates a lifter for AArch64 instructions from ARM’s MRA [5]. We adapted and improved ASLp
so it could be used from ARM-TV. Verbeek et al. [24] have developed a lifter for x86-64 code that
provably respects not only the overt computation that it performs, but also covert behaviors that
would be of interest to security researchers.

In terms of finding bugs using translation validation, Ruffy et al. [20] found 34 miscompilation
defects in P4C, a compiler for the P4 packet processing DSL, using a translation validation tool
that they developed. Dagsupta et al. [1] used an existing formal semantics for x86-64 to derive
their own reference lifter, and then used translation validation to find numerous bugs in McSema,
a security-oriented binary lifter for LLVM IR. Kwon et al. [4] used translation validation to find
a previously unknown bug in TurboFan (V8’s JIT compiler for JavaScript), and also showed that
they could reproduce a number of known bugs. Optimuzz [3] couples targeted fuzzing—where
mutations are selected for their ability to execute a specific part of the compiler—with translation
validation, discovering a number of bugs in LLVM and TurboFan.

6 Conclusion

Our original goal—a pushbutton tool that people developing safety-critical, embedded AArch64
systems can use to ensure that an LLVM upgrade did not introduce a backend-related miscompilation
into their software—is not yet fully realized. We still need to be able to reliably validate the
translation of large functions that are created by heavy inlining, and also to support concurrency
and system-level features such as volatile memory accesses, inline assembly, and interrupt handlers.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

Translation Validation for LLVM’s AArch64 Backend 369:25

Nevertheless, ARM-TV is useful and advances the state of the art. It checks not only functional
properties of code—such as its return value and memory effects—but also ABI-level properties,
such as clobbering a callee-saved register. We have implemented novel verification optimizations:
a vectorizer for ASLp that allows it to produce idiomatic LLVM vector operations instead of the
open-coded equivalent versions that would be produced by a straightforward reading of ARM’s
ASL (Architecture Specification Language). Also, we implemented several new memory subsystem
optimizations in Alive2 that substantially improve its performance when dealing with physical
pointers that are found in code lifted from assembly. We performed the first (as far as we’re
aware) apples-to-apples comparison of a hand-written instruction set semantics against a semantics
mechanically derived from ASL, finding that after significant optimization work, the mechanically
derived semantics perform almost as well as the hand-written ones. Finally, we used ARM-TV to
find 45 previously unknown miscompilation bugs in LLVM, which we reported, and 39 of which
have been fixed. ARM-TV is open source software and runs on Linux and macOS. It can be found at:
https://github.com/regehr/alive2/tree/arm-tv

Acknowledgments

This work was supported in part by national funds through FCT, Fundagéo para a Ciéncia e a
Tecnologia, under project UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020), and unrestricted
gifts from Google and from Woven by Toyota, Inc.

References

[1] Sandeep Dasgupta, Sushant Dinesh, Deepan Venkatesh, Vikram S. Adve, and Christopher W. Fletcher. 2020. Scalable
validation of binary lifters. In PLDI. doi:10.1145/3385412.3385964
[2] Yuyou Fan and John Regehr. 2024. High-Throughput, Formal-Methods-Assisted Fuzzing for LLVM. In CGO. doi:10.
1109/CG0O57630.2024.10444854
[3] Jaeseong Kwon, Bongjun Jang, Juneyoung Lee, and Kihong Heo. 2025. Optimization-Directed Compiler Fuzzing for
Continuous Translation Validation. Proc. ACM Program. Lang. 9, PLDI, Article 172 (June 2025). doi:10.1145/3729275
[4] Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Kihong Heo. 2024. Translation Validation for
JIT Compiler in the V8 JavaScript Engine. In ICSE. doi:10.1145/3597503.3639189
[5] Kait Lam and Nicholas Coughlin. 2023. Lift-off: Trustworthy ARMv8 semantics from formal specifications. In FMCAD.
doi:10.34727/2023/isbn.978-3-85448-060-0_36
[6] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In PLDL
doi:10.1145/2594291.2594334
[7] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling
high-level optimizations and low-level code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA, Article 125 (Oct. 2018).
doi:10.1145/3276495
[8] Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes. 2021. An SMT Encoding of LLVM’s Memory Model
for Bounded Translation Validation. In CAV. doi:10.1007/978-3-030-81688-9_35
[9] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.
Lopes. 2017. Taming Undefined Behavior in LLVM. In PLDI. doi:10.1145/3062341.3062343
[10] Arm Limited. 2025. Arm A64 Instruction Set for A-profile architecture. https://www.arm.com/architecture/cpu/a-profile
[11] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, and Yuyan Bao. 2022. SoK: Demystifying Binary Lifters Through the Lens of
Downstream Applications. In IEEE SP. doi:10.1109/SP46214.2022.9833799
[12] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen.
Proc. ACM Program. Lang. 4, OOPSLA, Article 196 (Nov. 2020). doi:10.1145/3428264
[13] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: bounded translation
validation for LLVM. In PLDL doi:10.1145/3453483.3454030
[14] George C. Necula. 2000. Translation validation for an optimizing compiler. In PLDI doi:10.1145/349299.349314
[15] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation Validation. In TACAS. doi:10.1007/BFb0054170
[16] Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier, and Marie-Laure Potet. 2020. Get rid of
inline assembly through verification-oriented lifting. In ASE. doi:10.1109/ASE.2019.00060
[17] Alastair Reid. 2016. Trustworthy specifications of ARM® v8-A and v8-M system level architecture. In FMCAD.
doi:10.1109/FMCAD.2016.7886675

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://github.com/regehr/alive2/tree/arm-tv
https://doi.org/10.1145/3385412.3385964
https://doi.org/10.1109/CGO57630.2024.10444854
https://doi.org/10.1109/CGO57630.2024.10444854
https://doi.org/10.1145/3729275
https://doi.org/10.1145/3597503.3639189
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_36
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/3276495
https://doi.org/10.1007/978-3-030-81688-9_35
https://doi.org/10.1145/3062341.3062343
https://www.arm.com/architecture/cpu/a-profile
https://doi.org/10.1109/SP46214.2022.9833799
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/349299.349314
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1109/ASE.2019.00060
https://doi.org/10.1109/FMCAD.2016.7886675

369:26 Berger et al.

[18] Yuyang Rong, Zhanghan Yu, Zhenkai Weng, Stephen Neuendorffer, and Hao Chen. 2024. IRFuzzer: Specialized Fuzzing
for LLVM Backend Code Generation. arXiv:2402.05256

[19] Abhishek Rose and Sorav Bansal. 2024. Modeling Dynamic (De)Allocations of Local Memory for Translation Validation.
Proc. ACM Program. Lang. 8, OOPSLA1, Article 146 (April 2024). doi:10.1145/3649863

[20] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet: finding bugs in compilers for programmable packet
processing. In OSDI https://www.usenix.org/conference/osdi20/presentation/ruffy

[21] Hanan Samet. 1975. Automatically proving the correctness of translations involving optimized code. Ph. D. Dissertation.
Stanford University.

[22] Thomas Sewell, Magnus Myreen, and Gerwin Klein. 2013. Translation Validation for a Verified OS Kernel. In PLDIL
doi:10.1145/2491956.2462183

[23] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evaluating value-graph translation validation for
LLVM. In PLDI. do0i:10.1145/1993498.1993533

[24] Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran. 2022. Formally verified lifting of C-compiled
x86-64 binaries. In PLDI. doi:10.1145/3519939.3523702

[25] Andrew Wagner, Zachary Eisbach, and Amal Ahmed. 2024. Realistic Realizability: Specifying ABIs You Can Count On.
Proc. ACM Program. Lang. 8, OOPSLA2, Article 315 (Oct. 2024). doi:10.1145/3689755

[26] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDIL
doi:10.1145/1993498.1993532

[27] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2013. Formal verification of SSA-based
optimizations for LLVM. In PLDI. doi:10.1145/2491956.2462164

Received 2025-03-24; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 369. Publication date: October 2025.

https://arxiv.org/abs/2402.05256
https://doi.org/10.1145/3649863
https://www.usenix.org/conference/osdi20/presentation/ruffy
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/3519939.3523702
https://doi.org/10.1145/3689755
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/2491956.2462164

	Abstract
	1 Introduction
	1.1 arm-tv
	1.2 Refinement
	1.3 A Representative Failure of Refinement
	1.4 Research Questions

	2 Translation Validation by Lifting
	2.1 Building an Execution Environment in LLVM for Lifted AArch64 Code
	2.2 Preserving Refinement During Lifting
	2.3 Checking ABI Rules
	2.4 Lifting Instructions by Hand
	2.5 Lifting Instructions Using ASLp
	2.6 Lifting Data
	2.7 Lifting Function Calls
	2.8 Supporting an Assembly-Level Memory Model in Alive2
	2.9 Optimizing the Assembly Memory Model
	2.10 Limitations of arm-tv

	3 Evaluation
	3.1 Experimental Setup
	3.2 RQ1: Can We Create a Practical Translation Validation Tool for LLVM's AArch64 Backend, Without Modifying LLVM?
	3.3 RQ2: Can We Optimize Alive2 for Assembly-Style Code that Freely Intermixes Integers and Pointers, that Defeat Many of Its Existing Memory Verification Optimizations?
	3.4 RQ3: What Are the Tradeoffs Between Writing Semantics for AArch64 Instructions by Hand and Deriving Semantics from ARM's Machine-Readable Architecture Description?
	3.5 RQ4: Does LLVM's AArch64 Backend Have Latent Miscompilation Bugs that We Can Discover Using Translation Validation?

	4 Discussion and Future Work
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

