Random Testing of
Interrupt-Driven Software

John Regehr
University of Utah

Integrated stress testing and debugqging

Random

inter!’upt Semantics
testing of interrupts

Source-source
transformation Delta

debugging

Static
stack

analysis Genetic
algorithms

¢ Goal: Stress testing and
debugging for interrupt-driven
embedded software

¢ Why?
» Interrupts hard to get right

» Regular testing typically exercises
small part of state space

» Stress testing tends to improve
software quality

» Interrupt-driven software used in
safety-critical applications

¢ Specific case: Sensor network
nodes running TinyOS

» Strongly interrupt-driven

» Application code runs in interrupt
mode

» Highly resource constrained

» Distributed and opaque —
magnifies effects of bugs

¢ Obvious stress testing
technique:

» Random interrupt testing — fire
Interrupts at random times

¢ Potential show stoppers:

» Random interrupts can violate
application semantics

> Interrupts can reenter and overflow
the stack

random

request ADC ADC
ADC INt. Int.

aberrant interrupt

random
network
Interrupts

stack overflow

¢ Many embedded systems permit
reentrant interrupts

¢ Problem: Interrupts arriving at
Inconvenient times break

applications

¢ Solution: Restrict interrupt
arrivals

¢ First classify each interrupt
vector

» Requested — arrives in response to
an action taken by the system

» Spontaneous — may arrive at any
time

¢ Restricted Interrupt Discipline
(RID):

» Requested interrupts — only permit
when a request is outstanding

» Spontaneous interrupts — only
permit when the interrupt isn’t
already running

Implementing RID

Annotate interrupt requests

Ensure that device initialization
code leaves each interrupt
disabled

Run system through a source-
to-source translator
Enable interrupt upon request

Disable requested interrupts
upon interrupt

Suppress reentrant interrupts

RID In TinyOS

¢ Implemented RID for five
Interrupt vectors

¢ Only bottom-level device driver
files modified
» A few LOC modified per vector

» Normal developers don’t touch
these files

¢ Use custom CIL extension for
src-src translation of C code
output by nesC compiler

M True False
. A DIE bat
I I T e e | bit

N | e e s ADC interrupt enabled

ADC interrupt request
- ADC interrupt handler

22510000 22511000 225 12000 22513000
Time (cycles)

Without RID

Stack usage (bytes)

False

[ADIE bit
I 1] I D B B | bit
ADC interrupt enabled

ADC interrupt request
ADC interrupt handler

With RID

Stack usage (bytes)

22510000 22511000 225 12000 22513000
Time (cycles)

RID Benefits

¢ Enables random testing by
suppressing aberrant and
reentrant interrupts

¢ Hardens embedded system with
respect to unexpected interrupts
after deployment

» SW bugs can cause these

> S0 can loose wires, EMI, or other
HW problems

Back to Random Testing

Generate interrupt schedule

Cycle accurate simulation with
Interrupt scheduling support

Interrupt Schedules

¢ List of pairs
» (vector #, firing time)
¢ Schedule generator

parameterized by density for
each interrupt vector

Simulator Support

¢ \We hacked Avrora — sensor net
simulator from UCLA

» Our interrupt scheduling patches
now included in the distribution

Detecting Failure

1. Ask the application — See If It
responds to network packets

2. Ask the simulator — Avrora
reports illegal memory access
and illegal instructions

TinyOS Oscilloscope Bug

ADC
request
and Int.

¢ Interrupt stores data into array
¢ dataTask resets buffer pointer

¢ No interlock between interrupt
and task

TinyOS Oscilloscope Bug

random ADC
requests
and interrupts

¢ Buffer overrun kills the system
unless dataTask runs on time

¢ Original interrupt schedule that
triggers bug is > 300,000
Interrupts

» Hard to tell what went wrong!
¢ Used “delta debugging”

algorithm to minimize schedule

» Can trigger bug with just 75
Interrupts

» Bug much easier to find now

¢ Fixing the bug: Easy — add array
bounds check

Problem: Stack overflow
KIlls sensor network
orograms

Solution: Compute WC
stack depth through
static analysis of
binaries

Lingering questios:

> Is the bound actually
conservative?

» If so, how pessimistic Is
the bound?

Answer: Testing

Stack Depth w/o Random

Static upper bound on stack depth (118 bytes)

Worst observed stack depth (28 bytes)

~
wn
ot
—
s
=
~
—
—
=¥
D
=
=z
o
c
—
70!

| ' |
990000 990200 990400 990600 990800 991000
Time (cycles)

Stack Depth w/Random

Static upper bound on stack depth (118 bytes)

<+—Worst observed stack depth
(112 bytes)

~_~
7]
>
—
5
=
—
—
—
=
>
=
-
()
]
~—
N

37080600 37080800 37081000 37081200 37081400
Time (cycles)

Finding Deep Stacks

¢ Pure random testing doesn’t cut It

» Program behavior surprisingly
sensitive to interrupt schedule
density and structure

» Even running overnight did not find

schedules that make deep stacks

¢ Solution: Genetic algorithm
evolves better interrupt schedules

» About 100 generations to find
deepest stack

> 3 hours CPU time

Revising a Stack Depth Bound

Stack depth (bytes)

200

22002000

22003000 22004000 22005000
Time (cycles)

22006000

Conclusions

¢ Random interrupt testing: Good
¢ Restricted Interrupt Discipline
makes It work

> Src-src transformation makes RID
easy to implement

» GA does directed search for
Interesting schedules

» Delta finds interesting subsets of
large interrupt schedules

