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Abstract
We present offline RAM compression, an automated source-to-
source transformation that reduces a program’s data size. Statically
allocated scalars, pointers, structures, and arrays are encoded and
packed based on the results of a whole-program analysis in the
value set and pointer set domains. We target embedded software
written in C that relies heavily on static memory allocation and runs
on Harvard-architecture microcontrollers supporting just a few KB
of on-chip RAM. On a collection of embedded applications for
AVR microcontrollers, our transformation reduces RAM usage by
an average of 12%, in addition to a 10% reduction through a dead-
data elimination pass that is also driven by our whole-program
analysis, for a total RAM savings of 22%. We also developed
a technique for giving developers access to a flexible spectrum
of tradeoffs between RAM consumption, ROM consumption, and
CPU efficiency. This technique is based on a model for estimating
the cost/benefit ratio of compressing each variable and then selec-
tively compressing only those variables that present a good value
proposition in terms of the desired tradeoffs.

Categories and Subject Descriptors C.3 [Special-purpose and
Application-based Systems]: Real-time and Embedded Systems;
D.3.4 [Programming Languages]: Processors—optimization

General Terms Performance, Languages

Keywords data compression, embedded software, memory opti-
mization, static analysis, TinyOS, sensor networks

1. Introduction
In 2004, 6.8 billion microcontroller units (MCUs) were shipped [5]:
more than one per person on Earth. MCUs are small systems-on-
chip that permit software control to be added to embedded devices
at very low cost: a few dollars or less. Sophisticated electronic
systems, such as those running a modern automobile, rely heavily
on MCUs. For example, in 2002 a high-end car contained more
than 100 processors [4].

RAM constraints are a first-order concern for developers. A typ-
ical MCU has 0.01–100 KB of RAM, 4–32 times as much ROM
as RAM, and no floating point unit, memory management unit, or
caches. We refer to program memory as “ROM” since it is treated
as such by applications, even though it can usually be written to (but
slowly and in blocks, in the common case of flash memory). Pro-
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grams running on microcontrollers are usually limited to on-chip
RAM. The cost of adding off-chip RAM is high, and many MCUs
do not even provide an external memory bus. RAM constraints are
one of the main reasons why MCU software does not commonly
take advantage of useful abstractions such as threads and a heap.

We developed offline RAM compression, a source-to-source
transformation that reduces the amount of memory used by a C
program by encoding and bit-level packing global scalars, pointers,
arrays, and structures based on the results of static whole-program
analysis. The goal of our work is to reduce the RAM usage of ex-
isting embedded software without a great deal of overhead and in a
way that is predictable at compile time. Our work targets legacy C
code and reduces RAM requirements automatically and transpar-
ently. Compile-time predictability rules out online RAM compres-
sion, a family of techniques that find and exploit redundant data as
a system executes [7, 32].

1.1 Fundamental observations
The following properties of embedded systems motivate our work.

RAM is used inefficiently. Although an n-bit machine word can
store 2n distinct values, in practice a typical word allocated by
a program stores many fewer values. For example, Brooks and
Martonosi [8] found that “roughly 50% of the instructions [in
SPECint95] had both operands less than or equal to 16 bits.” To
verify that small embedded systems behave similarly, we instru-
mented a simulator for Mica2 sensor network nodes to keep track
of the number of distinct values stored in each byte of RAM. Bytes
are a reasonable unit of measurement since Mica2s are based on
the 8-bit AVR architecture. We then ran a collection of sensor net-
work applications in the simulator. We found that, on average, a
byte of RAM used to store a global variable (or part of one) took
on just under four values over the execution of an application. In
other words, six out of every eight bits of RAM allocated to global
variables are effectively unused.

On-chip RAM is persistently scarce in low-end systems. RAM
is, and always has been, in short supply for small embedded sys-
tems that are constrained by power, size, and unit cost. Further-
more, it is not at all clear that RAM constraints are going to go
away in the foreseeable future. As transistor cost decreases, it be-
comes possible not only to create more capable processors at a
given price point, but also to create cheaper, lower-power proces-
sors with a given amount of RAM. Since many sectors of the em-
bedded market are extremely sensitive to unit cost, developers must
often choose the smallest, cheapest, and lowest-power MCU that
meets their needs. The decreasing cost of MCUs with a given set of
capabilities supports the development of new applications, such as
sensor networks, that were not previously feasible.

Value functions for resource use are discontinuous. For desktop
and workstation applications, value functions for resource use are
generally continuous in the sense that a small increase in resource



Device ROM RAM Ratio Price
ATtiny24 2 KB 128 B 16:1 $0.70
ATtiny45 4 KB 256 B 16:1 $0.97
ATmega48 4 KB 512 B 8:1 $1.50
ATmega8 8 KB 1024 B 8:1 $2.06
ATmega32 32 KB 2048 B 8:1 $4.75
ATmega128 128 KB 4096 B 32:1 $8.75
ATmega256 256 KB 8192 B 32:1 $10.66

Figure 1. Characteristics and prices of some members of Atmel’s
AVR family, a popular line of 8-bit MCUs. Prices are from http:
//digikey.com and other sources, for quantities of 100 or more.

use maps to a small decrease in utility. In contrast, given an embed-
ded processor with fixed amounts of on-chip RAM and ROM:

• A program requiring too much of either kind of storage simply
cannot be run: it has no value.

• Once a system fits into RAM and ROM, further optimization
provides no additional value.

These discontinuities imply that it is important to be able to trade
off between resources like RAM size, ROM size, and CPU use. The
ratio of ROM to RAM on the MCUs in Figure 1 gives us a general
idea of how much ROM we should be willing to sacrifice to save
a byte of RAM. Of course, the actual “exchange rate” for a given
system depends on what its limiting resource is.

Manual RAM optimization is difficult. Most embedded software
developers—including ourselves—have had the experience of run-
ning out of RAM with features still left to implement. Manually
reducing RAM usage is difficult and error-prone. Furthermore, it
is not forward-thinking: highly RAM-optimized software often be-
comes over-specialized and difficult to maintain or reuse.

1.2 Benefits
From the point of view of an embedded software developer, our
work has two concrete benefits. First, it can support basing a prod-
uct on a less expensive, more energy-efficient MCU with less
RAM. For example, the Robot2 application that is part of our
benchmark suite (see Section 6) requires 368 bytes of RAM and
runs on an Atmel ATmega8535 MCU with 512 bytes of RAM. The
compressed version of Robot2 uses 209 bytes and therefore would
fit onto a cheaper part with 256 bytes of RAM. Figure 1 gives an
idea of the potential cost savings. Savings of pennies or dollars can
add up to real money in the high-volume, low-margin markets for
which MCUs are designed.

The second important benefit of our work is that it can enable
substantially more functionality to be placed on an MCU with a
given amount of RAM. For example, consider a sensor network
developer who wishes to add network reprogramming [16] and
link-level packet encryption [17] to an existing TinyOS application
that already uses the entire 4 KB of RAM on a Mica2 sensor
network node. Since these features are orthogonal to application
logic, both are designed as transparent add-ons. Obviously this only
works if enough memory is available. Across a set of representative
TinyOS applications, our tool reduces RAM usage by an average
of 19%—more than enough to support the addition of network
reprogramming, which requires 84 bytes of RAM (2.1% of the
total), and encryption, which requires 256 bytes of RAM (6.3%
of the total). Without our work, this developer would be forced to
manually reduce RAM usage by a total of 340 bytes: an unpleasant
proposition at best.

1.3 Contributions
Our research has three main contributions:

1. Offline RAM compression, a new technique for automatically
reducing RAM usage of embedded software using whole-
program analysis and source-to-source translation.

2. A novel technique supporting flexible tradeoffs between RAM
size, ROM size, and CPU efficiency by estimating the cost/benefit
ratio of compressing each variable and then selectively com-
pressing only the most profitable, up to a user-configurable
threshold.

3. A tool, CComp, that implements offline RAM compression
and tradeoff-aware compilation. Although CComp currently
targets C code for AVR processors, only a small part of our
tool is architecture-specific. CComp is available at http:
//www.cs.utah.edu/~coop/research/ccomp/ as open-
source software.

2. Background: Microcontroller-Based
Embedded Software

Software for MCUs is somewhat different from general-purpose
application code. These characteristics are largely programming-
language independent, having more to do with requirements of the
domain and properties of the platform. Below are some key features
of microcontroller software; two represent complications that we
are forced to handle and one is a restriction that we can exploit.

Software is interrupt-driven. Interrupts are the only form of con-
currency on many MCU-based systems, where they serve as an
efficient alternative to threads. Interrupt-driven software uses di-
verse synchronization idioms, some based on disabling interrupts
and others based on volatile variables and developer knowledge of
hardware-atomic memory operations. The implication for our work
is that we need to provide a sound dataflow analysis of global vari-
ables even in the presence of unstructured, user-defined synchro-
nization primitives.

Locality is irrelevant. MCUs have relatively fast memory, no
caches or TLBs, and minimal (three stage or smaller) pipelines.
Thus, there are no performance gains to be had by improving
spatial locality through RAM compression and, furthermore, it is
difficult to hide the overhead of compressing and uncompressing
data. The implication is that code implementing compression must
be carefully tuned and that we must invest effort in optimizations.

Memory allocation is static. The only form of dynamic memory
allocation on most MCU-based systems is the call stack. When
RAM is very constrained, heaps are unacceptably unpredictable
(e.g., fragmentation is difficult to reason about and allocations may
fail). The implication is that our pointer analysis can be in terms of
static memory objects and stack objects.

3. Static Analysis
CComp is our tool that performs offline RAM compression through
static analysis and source-to-source transformation. It borrows
heavily from cXprop, our existing whole-program dataflow ana-
lyzer for C [12]. cXprop is itself built upon CIL [20], a parser,
typechecker, and intermediate representation for C. Figure 2 shows
the role of CComp in the toolchain.

CComp is sound under a standard set of assumptions. Mainly,
the analyzed program must not perform out-of-bounds memory
accesses, and inline assembly must be well-behaved (no side effects
visible at the source level).
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Figure 2. Toolchain for offline RAM compression

This section describes both the previous analysis features that
we borrowed from cXprop and the new ones implemented by
CComp.

3.1 Inlining
Before CComp proper runs, we run the code being analyzed
through an aggressive source-to-source function inlining pass. Our
inliner is based on a model of code bloat; its goal is to minimize
the size of the eventual object code. Inlining increases the size of
functions, which improves the precision of our context-insensitive
dataflow analysis.

3.2 Value set analysis
Offline RAM compression is driven by the value set abstract do-
main, where abstract values are bounded-size sets of concrete val-
ues. From cXprop, CComp inherited transfer functions not only for
the value set domain but also for the interval and bitwise domains.
The interval domain represents abstract values as integer ranges,
for example [16..200]. In the bitwise domain, each bit of a value
is independently ⊥ (unknown), 0, or 1. Our choice of the value
set domain was pragmatic: of the domains we implemented, it pro-
duces the best results. Interval-domain analysis of our benchmark
programs supports 1.8% RAM compression and bitwise analysis
supports 2.2% RAM compression, whereas value set analysis sup-
ports 12% RAM compression. Note, however, that our implemen-
tations of these three domains are not directly comparable: we have
extensively tuned our value set implementation for precision, for
example by adding backwards transfer functions that gain informa-
tion from branches.

The maximum value set size is configurable; for this work, we
set it to 16. Larger sizes resulted in significant analysis slowdown
and only a minor increase in precision.

3.3 Pointer set analysis
The points-to analysis in CComp is based on a pointer set analy-
sis that maintains explicit sets of locations that each pointer may
alias. This analysis is fairly precise because it is flow-sensitive and
field-sensitive. The pointer set domain works well for MCU-based
applications because the set of items that are potentially pointed to
is generally fairly small. A pointer set of cardinality one indicates
a must-alias relationship, supporting strong updates of pointed-to
values (a strong update replaces the existing state at a storage loca-
tion, whereas a weak update merges the new information with the
old). The pointer set domain, illustrated in Figure 3, is analogous
to the value set domain except that it contains a special not-NULL
element that permits the domain to represent the (common) case
where nothing is known about a pointer’s value except that it can-
not be NULL.

⊥

⊥

{&x} {&y} {&z}

{&y,&z} {&z,NULL}{&x,&y} {&x,&z} {&x,NULL} {&y,NULL}

{NULL}

not−NULL

Figure 3. Pointer set lattice for three variables and maximum set
size of two

3.4 Concurrency analysis
CComp can soundly analyze global variables even in the presence
of interrupt-driven concurrency. It does this using a two-element
lattice to conservatively detect racing variables that are accessed
directly or indirectly by multiple flows (i.e., either by multiple
interrupt handlers, or else by one interrupt handler and by the non-
interrupt context) and whose accesses are not uniformly protected
by disabling interrupts. Racing variables are considered to have
the value ⊥ at all program points. Non-racing variables are always
manipulated atomically and can be modeled soundly by identifying
all program points where interrupts might become enabled, and
then adding flow edges from these locations to the start of all
interrupt handlers.

Dataflow analysis of racing variables can be performed us-
ing essentially the same technique, where each access to a rac-
ing variable is considered to be an atomic access, after which
flow edges to interrupts must be added. We leave this feature in
CComp turned off by default because in our experience it does
not significantly increase precision and because it is potentially un-
sound when language-level memory operations are compiled down
to non-atomic instruction sequences.

3.5 Integrated analyses
A well-known way to avoid phase-ordering problems in compil-
ers is to create integrated super-analyses that run multiple anal-
yses concurrently and permit them to exchange information with
each other. For example, conditional constant propagation [31] in-
tegrates constant propagation and dead code detection. CComp in-
tegrates all of its main analyses: value set analysis, dead code de-
tection, pointer set analysis, and concurrency analysis. Although
we have not quantified the benefits of integrating these analyses, it
seems clear that, at least in some cases, there was no reasonable
alternative. For example, concurrency analysis cannot run before
pointer analysis (in this case aliases cannot be tracked accurately,
forcing a highly pessimistic race analysis) or after it (racing point-
ers will have been analyzed unsoundly).

3.6 Whole-program optimization
The results of CComp’s interprocedural dataflow analysis are used
to perform interprocedural constant propagation, pointer optimiza-
tions, dead code elimination, dead data elimination, redundant syn-
chronization elimination, copy propagation, and branch, switch,
and jump optimizations.

3.7 Modeling volatile variables
The C99 standard states that:

An object that has volatile-qualified type may be modified
in ways unknown to the implementation or have other un-
known side effects.



In practice, volatile variables are not subject to most compiler
optimizations. Similarly, early versions of CComp did not attempt
to model volatiles, treating them as perpetually ⊥.

Eventually, we realized not only that bottom-valued global vari-
ables were hurting CComp’s precision (they tend to be contagious)
but also that many volatile variables can be analyzed soundly. The
insight is that volatiles are only opaque at the language level. When
non-portable platform-level properties are known, different uses of
the volatile qualifier can be identified:

1. Storage locations corresponding to device registers are volatile
in the most literal sense: their values can change at any time
and both reads and writes may be side-effecting. Data flowing
through these locations cannot be analyzed by CComp.

2. Global variables in regular RAM are often declared as volatile
to prevent compiler-level caching of values. These variables
cannot, in fact, be modified except by stores in the program—
which may occur in interrupt handlers. C does not have a se-
mantics for interrupts, but CComp does, and so it can safety
analyze and even compress volatile global variables.

CComp identifies references to device registers heuristically, by
matching against the two important idioms for accessing hardware
devices from C code. The first method is portable: a constant
integer is cast into a pointer-to-volatile and then dereferenced. The
second method is non-portable: gcc permits variables to be bound
to specific memory locations occupied by device registers. We
claim that dataflow analysis through volatiles is sound under the
assumption that our heuristic correctly identifies accesses to device
registers.

3.8 Analyzing arrays
CComp represents each array using a single abstract value that
tracks the greatest lower bound of any value stored in any element
of the array. We had two reasons for choosing a collapsed array
representation. First, it is often the case that the elements of a given
array store similar values. For example, a common use of arrays in
networked embedded applications is to store a queue of pointers to
packet buffers. In this case, the pointer set stored in each element
of the array is the same—the set of buffers—so our analysis loses
nothing compared to a more precise array model. Second, collapsed
arrays are efficient.

3.9 Scalar replacement of aggregates
CComp compresses values found in C structs by splitting them into
scalars and then attempting to compress the scalars. We created a
scalar replacement pass that avoids hazards such as address-taken
structs and structs inside unions. It also takes care to retain call-by-
value semantics for arrays formerly inside structs. In C, structs are
passed by value while arrays—due to being treated like constant
pointers—are passed by reference.

3.10 Emulating external functions
cXprop treated external functions (those whose code is unavailable
at analysis time) as safe or unsafe. Functions are unsafe by default,
meaning that they must be modeled conservatively: when called
they kill all address-taken variables and furthermore they are as-
sumed to call back into address-taken functions in the application.
A safe function is one like scanf that affects only program state
passed to it through pointers. CComp improves upon this analysis
by adding two new categories of external functions. A pure func-
tion, such as strlen, has no side effects. An interpreted function
has a user-defined effect on program state. For example, we in-
terpret calls to memset in order to perform array initialization. We
could almost never compress an array before supporting this idiom.

// compression function for 16-bit variables
unsigned char __f_16 (uint16_t * table,

uint16_t val)
{

unsigned int index;
for (index=0; ; index++) {

if (pgm_read_word_near (table + index) == val)
return index;

}
}

// decompression function for 16-bit variables
uint16_t __finv_16 (uint16_t * table,

unsigned char index)
{

return pgm_read_word_near (table + index);
}

Figure 4. Compression and decompression functions based on ta-
ble lookup. The function pgm read word near is an AVR primi-
tive for accessing values from ROM.

4. Compressing RAM
This section describes the theory and practice of offline RAM
compression, including some optimizations.

4.1 Theory
Let x be a variable in a given program that occupies n bits. Since
the embedded systems under consideration use static memory al-
location, we can speak of variables rather than more general mem-
ory objects. Let Vx be a conservative estimate of the set of val-
ues that can be stored into x across all possible executions. In the
general case (i.e., in future implementations of offline RAM com-
pression), Vx could be computed by a type-based analysis, by a
constraint-based analysis, by exhaustive testing, etc., as opposed to
being computed using value set or pointer set analysis.

Offline RAM compression can in principle be performed when
|Vx| < 2n. However, in practice it should be the case that
dlog2 |Vx|e < n. In other words, compressing x by itself should
result in a savings of at least one bit.

Exploiting the restricted size of Vx may be difficult because it
may not be easy to represent the actual values in Vx compactly. A
general solution is to find another set Cx with the same cardinality
as Vx, and also to find a function fx that is a one-to-one and onto
mapping from Vx to Cx. Then, fx is a compression function and
its inverse f−1

x is a decompression function (one-to-one and onto
functions can always be inverted).

4.2 Finding and implementing fx and f−1
x

For each compressed variable x, we find fx and f−1
x as follows:

1. If x is an integer type and ∀y ∈ Vx, 0 ≤ y < 2dlog
2
|Vx|e,

then the trivial compression function fx(y) = y can be used.
Across our set of benchmark applications, 65% of compressed
variables fall into this case.

2. Otherwise, we let the elements of Cx be 0..|Vx| − 1 and let fx

and f−1
x be lookups in a compression table stored in ROM. The

compression table is simply an array storing all members of Vx.

Figure 4 depicts our compression table lookup functions. De-
compression uses the compressed value as an index into the com-
pression table, and compression involves a linear scan of the com-
pression table. Empirically, on the AVR MCUs that we use to eval-
uate offline RAM compression, linear scan is faster than binary
search, on average, for value set sizes up to 19. Another argument



against binary search is that since CComp operates by source-to-
source transformation, we are unable to order pointers by value.

As we did this work, other implementations of compression
and decompression suggested themselves. For example, if x is an
integer type and we can find a constant c such that ∀y ∈ Vx, c ≤
y < c + 2dlog

2
|Vx|e, then fx(y) = y − c is a valid compression

function. However, we did not implement this because we observed
few cases where it would help.

4.3 Program transformation
For each compressed variable x, CComp performs the following
steps:

1. If x requires a compression table, allocate the table in ROM.

2. Convert x’s initializer, if any, into the compressed domain.

3. Allocate space for x in a global compressed struct as a bitfield
of dlog2 |Vx|e bits.

4. Rewrite all loads and stores of x to access the compressed bit-
field and go through compression and decompression functions.

CComp does not attempt to compress racing variables; this nat-
urally falls out of the concurrency analysis described in Section 3.4
that treats racing variables as ⊥ at all program points. CComp also
does not attempt to compress floating point values. This was a de-
sign simplification that we made based on the lack of floating point
code in the MCU-based applications that we target.

4.4 An example
Figure 5 illustrates RAM compression using code from the stan-
dard TinyOS application BlinkTask. The TOSH queue data struc-
ture shown in Figure 5(a) is at the core of the TinyOS task sched-
uler, which supports deferred function calls that help developers
avoid placing lengthy computations in interrupt handlers. Elements
of the task queue are 16-bit function pointers on the AVR archi-
tecture. Through static analysis, CComp shows that elements of
the task queue have pointer sets of size four. The contents of this
pointer set are used to generate the compression table shown in Fig-
ure 5(b). Since each element of the task queue can be represented
using two bits, an 8:1 compression ratio is achieved, saving a total
of 14 bytes. Figure 5(c) shows part of the compressed data region
for the BlinkTask application. Finally, Figure 5(d) shows how the
original application reads a function pointer from the task queue
and Figure 5(e) shows the transformed code emitted by CComp.

4.5 A global synchronization optimization
Since compressed data is accessed through non-atomic bitfield op-
erations, an unprotected global compressed data region is effec-
tively a big racing variable. To avoid the overhead of disabling in-
terrupts to protect accesses to compressed data, we instead decided
to segregate the compressed data into two parts: one containing
variables whose accesses are protected by disabling interrupts, the
other containing variables that do not need to be protected because
they are not accessed by concurrent flows. Neither of the segregated
compressed data regions requires explicit synchronization.

4.6 A global layout optimization
As shown in Figure 5(c), we represent compressed RAM using C’s
bitfield construct. The cost of a bitfield access depends on the align-
ment and size of the field being accessed. There are three major
cases for bitfield sizes of less than a word: a bitfield aligned on a
word boundary, a bitfield that is unaligned and does not span multi-
ple words, and a bitfield that is unaligned and spans words. Figure 6
summarizes the code size and performance costs of these different
cases for our toolchain. Other architectures and compilers would

(a) Original declaration of the task queue data structure:

typedef struct {
void (*tp)(void);

} TOSH_sched_entry_T;

volatile TOSH_sched_entry_T TOSH_queue[8];

(b) Compression table for the task queue (the progmem attribute
places constant data into ROM):

unsigned short const __attribute__((__progmem__))
__valueset_3[4] = {

NULL,
&BlinkTaskM$processing,
&TimerM$HandleFire,
&TimerM$signalOneTimer

};

(c) The compressed task queue is element f9 of the global com-
pressed data region, which has room for eight two-bit com-
pressed values:

struct __compressed {
char f9[2] ;
unsigned char f0 : 3;
unsigned char f1 : 3;
unsigned char f7 : 1;
...

};

(d) Original code for reading the head of the task queue:

func = TOSH_queue[old_full].tp;

(e) Code for reading the head of the compressed queue (the
“2” passed to the array read function indicates that compressed
entries are two bits long):

__tmp = __array_read (__compressed.f9, old_full, 2);
func = __finv_16 (__valueset_3, __tmp);

Figure 5. Compression transformation example for the main
TinyOS 1.x scheduler data structure: a FIFO queue of function
pointers for deferred interrupt processing

access type read write
bytes cycles bytes cycles

aligned 5 10 9 18
unaligned 7.2 14.4 11.2 22.4
spanning 13 26 21 42

Figure 6. Average bitfield access costs for the AVR processor and
gcc

have different costs, but we would expect the ratios to be roughly
the same since the unaligned and spanning cases fundamentally ne-
cessitate extra ALU and memory operations.

Rather than attempting to compute an optimal layout for com-
pressed data, we developed an efficient greedy heuristic that at-
tempts to meet the following two goals. First, the compressed vari-
ables with the most static accesses should be byte-aligned. On the
AVR architecture, words are bytes. Second, no compressed variable
should span multiple bytes. The heuristic operates as follows:

1. For each positive integer n less than the number of compressed
variables:

(a) Align on byte boundaries the n variables with the largest
number of static accesses.



(b) Starting with the largest (compressed size) remaining vari-
able, pack it into the structure under the constraint that it
may not span two bytes. A variable is placed in the first lo-
cation where it fits, extending the structure if it fits nowhere
else. This step is repeated until there are no remaining vari-
ables to pack.

(c) Fail if there is any wasted space in the packed structure, oth-
erwise succeed. Note that it is possible for there to be holes
in the packed structure without wasting space. Instead of al-
lowing the compiler-added padding at the end of a struct for
alignment purposes, we disperse the padding throughout the
struct.

2. Choose the succeeding result for the largest n.

In practice this heuristic works well, and in fact it almost always
succeeds in byte-aligning the maximum possible number of high-
priority compressed variables (that is, one per byte of compressed
data). The heuristic can fail in the situation where it is forced to
choose between wasting RAM and permitting a variable to span
multiple bytes, but we have not yet seen this happen for any input
that occurs in practice. If it does fail, we warn the user and back off
to the unordered compressed structure.

4.7 Local optimizations
We implemented several additional optimizations. First, duplicate
compression tables are eliminated, saving ROM. Second, when
an application stores a constant into a compressed variable, the
compression table lookup can be performed at compile time. gcc
cannot perform this optimization on its own. Finally, we have gcc
inline our compression and decompression functions. Since these
functions are small, this gives a reasonable speedup with minimal
code bloat.

5. Tradeoff-Aware RAM Compression
This section explores the idea of computing a cost/benefit ratio for
each compressible variable and then selectively compressing only
a highly profitable subset of the compressible variables. In other
words, we give users a RAM compression knob to turn, where
the 100% setting compresses all compressible variables, the 0%
setting performs no compression, and at points in between the
system attempts to give up as little ROM or CPU time as possible
while achieving the specified level of compression. Tradeoff-aware
compilation can help developers exploit the discontinuous nature
of value functions for resource use (Section 1.1) by, for example,
compiling an application such that it just barely fits into RAM, into
ROM, or into an execution time budget.

Our RAM/ROM tradeoff is based on static information while
our RAM/CPU tradeoff is based on profile information. We could
have made the RAM/CPU tradeoff by using standard heuristics
based on static information (e.g., “each loop executes 10 times”).
However, we were reluctant to do so because in an interrupt-driven
system, the dynamic execution count of each function is strongly
dependent on the relative frequencies with which different inter-
rupts fire.

The key to producing good tradeoffs is to accurately estimate
the cost/benefit ratio of compressing each variable. We compute
this ratio as follows:

Cost/Benefit Ratio =
1

Su − Sc

6
X

i=1

Ci(Ai + BiV ) (1)

Su is original size of the compressible object, Sc is the compressed
size, C is an access profile: a vector of the static or dynamic counts
of the basic operations required to compress the variable, A and
B are vectors of platform-specific, empirically determined cost pa-

access type size cost (bytes) speed cost (cycles)
bitfield read 6.1 12.2
bitfield write 10.1 20.2
array read 40 90
array write 60 120
decompress 24 16
compress 14 20 + 9.5V

Figure 7. Two sets of parameters that can be plugged into Equa-
tion 1 to support either trading RAM for ROM or RAM for CPU
cycles

rameters, and V is the cardinality of the variable’s value set. Fig-
ure 7 shows two sets of parameters, one in terms of ROM cost and
the other in terms of CPU cost, which we computed for the AVR
processor. Most of the B constants are zero, meaning that opera-
tions have constant cost. The exception is the cycle cost to com-
press a value, which involves a linear scan of the compression table
as shown in Figure 4. In some cases these costs are average figures
across several datatypes. For example, since AVR is an 8-bit archi-
tecture, compressing a char is cheaper than compressing an int.
We could have made this information more fine-grained by break-
ing out more sub-cases, but we judged that this had diminishing
returns.

The static count of each basic compression and decompression
operation naturally falls out of the compilation process. These
counts are taken after the optimizations described in Section 4
have been performed. We measured dynamic operation counts by
running applications in a modified version of the Avrora sensor
network simulator [29].

6. Evaluation
We evaluate offline RAM compression by answering several ques-
tions: How much RAM is saved? What is the cost in terms of ROM
usage and execution time? Are tradeoffs between resources effec-
tive? What is the cost in terms of analysis time?

Our evaluation is based on a collection of embedded applica-
tions for Atmel AVR 8-bit microcontrollers:

• Two robot control applications, Robot1 and Robot2, emitted
by KESO [27], an ahead-of-time Java-to-C compiler for con-
strained embedded systems. They are 2526 and 3675 lines of
code (LOC), respectively.

• An avionics control application, UAVcontrol, for a small un-
manned aerial vehicle developed by the Paparazzi project [22]
(4215 LOC).

• Eleven sensor networking applications from TinyOS [15] 1.1,
emitted by the nesC [13] compiler (5800–39000 LOC).

In all cases our baseline is the RAM usage, ROM usage, and
CPU usage of the out-of-the-box version of the application as
compiled by avr-gcc version 3.4.3. For the TinyOS applications,
we used Avrora [29], a cycle-accurate sensor network simulator,
to measure efficiency in terms of duty cycle—the fraction of time
the processor is active. This is a good metric because it directly
correlates to energy usage and hence system lifetime: a primary
consideration for sensor networks.

We did not measure the efficiency of the KESO or Paparazzi
applications; they run on custom hardware platforms with many
peripherals. Extending Avrora to simulate enough hardware that
we could run these applications was beyond the scope of our work.

CComp does not change the semantics of an application unless
it contains analysis or transformation bugs. To defend against this
possibility, we validated many of our compressed applications. This



duty cycle
code size
data size

***

  −40%

  −30%

  −20%

  −10%

  0%

  10%

  20%

  30%

  40%

Robot1
Robot2

UAVcontrol

Oscilloscope

GenericBase

RfmToLeds

CntToLedsAndRfm

SenseToRfm

TestTimeStamping
TestDrip Surge

Ident

TestTinySec

HighFrequencySampling
TinyDB

AVERAGE

C
ha

ng
e 

fr
om

 o
pt

im
iz

at
io

n

Figure 8. Change in resource usage of applications from whole-program optimization (Section 3.6), without RAM compression
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Figure 10. Change in resource usage of applications at the 90% compression level, trading RAM for code size
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Figure 11. Change in resource usage of applications at the 90% compression level, trading RAM for duty cycle



was not totally straightforward because unlike benchmarks, real
embedded applications do not simply transform inputs into outputs.
Our validation was by hand, by checking that applications exhibited
the expected behavior. For example, for Surge, a multihop routing
application, we ensured that routes were formed and packets were
properly forwarded across the network to the base station. We
did not validate the applications for which we have no simulation
environment: Robot1, Robot2, and UAVcontrol.

6.1 Effectiveness of optimizations
Section 4.2 mentions that across our benchmark suite, 65% of com-
pressed variables meet our criteria for using simple compression
and decompression functions, as opposed to indirection through a
ROM-based compression table. On average, this optimization re-
duces code size by 11% and duty cycle by 22%. Intelligent layout
of bitfields in the global compressed data structure (Section 4.6)
reduces code size by 2.7% and duty cycle by 1.9%.

6.2 Per-application resource usage results
Figures 8–11 compare applications processed by CComp against a
baseline of out-of-the-box applications in terms of code size, data
size, and duty cycle. Asterisks in these figures mark data points that
are unavailable because we cannot simulate some applications.

Figure 8 shows that when RAM compression is disabled,
CComp reduces usage of all three resources through the optimiza-
tions described in Section 3.6. On the other hand, Figure 9 shows
that maximum RAM compression results in significantly greater
RAM savings: 22%, as opposed to 10% in Figure 8.

The problematic increase in average duty cycle shown in Fig-
ure 9 indicates that RAM compression can be expensive when
hot variables are compressed. The general-purpose solution to this
problem is tradeoff-aware compilation.

6.3 Results from tradeoffs
Figures 10 and 11 show the effect on our benchmark applications
of turning the “RAM compression knob” down to 90%. That is,
reducing RAM compression to 10% below the maximum in order
to buy as much code size or duty cycle as possible. Figures 12
and 13 show the full spectrum of tradeoffs from 0% to 100% RAM
compression. The most important thing to notice about these graphs
is that sacrificing a small amount of RAM buys a major decrease in
duty cycle and a significant decrease in code size. The steepness of
these curves near 100% RAM compression indicates that our cost
functions work well.

Figure 14 is a different way to look at the data from Figures 12
and 13. The diamond shape traced by the data points in this para-
metric plot provides additional validation that our tradeoff strate-
gies are working properly.

6.4 Analysis time
The median time to apply offline RAM compression to members of
our benchmark suite is 62 s. The minimum is 2 s and the maximum
is 94 minutes. Only two applications (TestTinySec and TinyDB)
require more than five minutes. CComp is a research prototype and
we have not optimized it for speed.

7. Related Work
There is substantial body of literature on compiler-based RAM op-
timizations. Here we discuss representative publications from sev-
eral categories of research that are related to ours. We do not dis-
cuss the literature on code compression and code size optimization,
which is largely orthogonal to our work.

Compiler-based offline RAM size optimization. Ananian and Ri-
nard [1] perform static bitwidth analysis and field packing for Java
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Figure 12. Quantifying the average effect on code size of turning
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objects (among other techniques less closely related to our work).
Zhang and Gupta [33] use memory profile data to find limited-
bitwidth heap data that can be packed into less space. Lattner and
Adve [18] save RAM through a transformation that makes it pos-
sible to use 32-bit pointers on a per-data-structure basis, on archi-
tectures with 64-bit native pointers. Chanet et al. [10] apply whole-
program optimization to the Linux kernel at link time, reducing
both RAM and ROM usage. Virgil [28] has a number of offline
RAM optimizations including reachable members analysis, refer-
ence compression, and moving constant data into ROM.

Our work exploits the same basic insight as these previous ef-
forts, but it differs in several key ways. First, we have taken a
whole-system approach to compressing RAM for legacy C appli-
cations in the presence of interrupt-driven concurrency. Most pre-
vious work has focused on benchmarks rather than attacking actual
embedded applications. Second, our value set and pointer set do-
mains appear to work significantly better than do the interval and
bitwise domains used to analyze bitwidth in most previous work.
Third, we perform tight bit-level packing across multiple variables
to achieve good savings on very small platforms. Fourth, we com-
press scalars, pointers, structures, and arrays. Most previous work
has focused on some subset of these kinds of data. Finally, we have
carefully focused on optimizations and tradeoffs to avoid slowing
down and bloating applications unacceptably. This focus was nec-
essary due to the constrained nature of the hardware platforms that
we target and also because on cacheless systems there is no possi-
bility of hiding overheads by improving locality.

A separate body of work performs offline RAM optimization
using techniques that exploit the structure of runtime systems rather
than (or in addition to) exploiting the structure of application data.
Barthelmann [6] describes inter-task register allocation, a global
optimization that saves RAM used to store thread contexts. Our
previous work [25] addressed the problem of reducing stack mem-
ory requirements through selective function inlining and by restrict-
ing preemption relations that lead to large stacks. Grunwald and
Neves [14] save RAM by allocating stack frames on the heap, on
demand, using whole-program optimization to reduce the number
of stack checks and to make context switches faster. We believe
these techniques to be complementary to CComp: they exploit dif-
ferent underlying sources of savings than we do.

Static bitwidth analysis. A number of researchers, including
Razdan and Smith [24], Stephenson et al. [26], Budiu and Gold-
stein [9], Ananian and Rinard [1], Verbrugge et al. [30], and our-
selves [12] have developed compiler analyses to find unused parts
of memory objects. Our research builds on this previous work, in-
novating in a few areas such as analyzing dataflow through volatile
variables.

Online RAM size optimization. The constrained nature of RAM
in embedded systems is well known and a number of research ef-
forts have addressed this problem using online schemes that dy-
namically recover unused or poorly used space. Biswas et al. [7]
and Middha et al. [19] use compiler-driven techniques to blur the
lines between different storage regions. This permits, for exam-
ple, stacks to overflow into unused parts of the heap, globals, or
other stacks. CRAMES [32] saves RAM by applying standard data
compression techniques to swapped-out virtual pages, based on the
idea that these pages are likely to remain unused for some time.
MEMMU [2] provides on-line compression for systems without a
memory management unit, such as wireless sensor network nodes.
Ozturk et al. [21] compress data buffers in embedded applications.
In contrast with our work, these techniques are opportunistic and
not guaranteed to work well for any particular run of a system.
Online RAM optimizations are most suitable for larger embedded
platforms with RAM sized in hundreds of KB or MB where—

statistically—there are always enough opportunities for compres-
sion to provide good results. Also, most online RAM optimiza-
tions incur unpredictable execution time overheads (for example,
uncompressing a memory page on demand) and therefore may not
be applicable to real-time systems.

RAM layout optimizations. A significant body of literature ex-
ists on changing the layout of objects in memory to improve per-
formance, usually by improving spatial locality to reduce cache
and TLB misses. Good examples include Chilimbi et al.’s work
on cache-conscious structure layout [11] and Rabbah and Palem’s
work on data remapping [23]. This type of research relates mostly
to our compressed structure layout work in Section 4.6. As far as
we know, no existing work has addressed the problem of bitfield
layout to minimize code size or execution time, as we have.

Value-set-based pointer analysis. Abstract values in our value set
and pointer set domains are sets of explicit concrete values. Balakr-
ishnan and Reps [3] used value set analysis to analyze pointers in
executable code, but they use the term differently than we do. Their
abstract values are sets of reduced interval congruences—a highly
specialized domain tuned to match x86 addressing modes.

8. Conclusions
We developed a novel method for offline RAM compression in em-
bedded software that employs static whole-program analysis in the
value set and pointer set domains, followed by source-to-source
transformation. We have shown that across a collection of embed-
ded applications targeting small microcontrollers, compression re-
duces an application’s RAM requirements by an average of 12%,
in addition to a 10% savings through a dead data elimination pass
that is also driven by our whole-program analysis. This result is sig-
nificant because RAM is often the limiting resource for embedded
software developers, and because the programs that we started with
had already been tuned for memory efficiency. Our second main
contribution is a tradeoff-aware compilation technique that, given
a goal in terms of RAM savings, attempts to meet that goal while
giving up as little code size or as few processor cycles as possible.
Finally, we have created a tool, CComp, that implements offline
RAM compression and tradeoff-aware compilation for embedded
C programs.
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